Introduction to Meta-Analysis

Samantha Estrada PhD

ORSSP Data Analysis Lab Consultant

What is Meta-Analysis?

"the *statistical analysis* of a large collection of *analysis results* from individual studies for the purpose of integrating the findings" (Glass, 1976)

Systematic Meta-Review Analysis

Where to start...

- Identify a topic
 - Team
- Keywords
 - Report on the keywords you used, "finney schraw current statistics selfefficacy", "current statistics self-efficacy CSSE" "CSSE"
- Boolean logic
 - Statistical self-efficacy OR
 - Statistical confidence OR
 - Statistical anxiety OR
 - Statistical education* OR
 - Statistical learning OR
 - Statistical self-belief OR

"Data Collection"

- Identify a popular database within your field to comb through the studies.
 - Google Scholar
 - Web of Science
 - PsycINFO
 - Pubmed/Medline
- Covidence tool:

https://libguides.uttyler.edu/c.php?g=1341980&p=9993128

[HTML] Self-efficacy beliefs in college statistics courses

SJ Finney, G Schraw - Contemporary educational psychology, 2003 - Elsevier

... a measure of **statistics self-efficacy** and use it to examine growth in **self-efficacy** over a one-... First, there is no measure of **statistics self-efficacy** with validity evidence. Instead, previous ... \therefore Save \Im Cite <u>Cited by 457</u> Related articles All 6 versions

PICOT

- To include the studies there needs to be a similarity in the studies.
- Suggested models for this:
- PICOT (<u>PCR Online, n. d.</u>)
 - Populations
 - Intervention
 - Comparison
 - Outcome
 - Time frame

Guidelines

- PRISMA: Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA)
 - Tricco et al. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. *Annals of internal medicine*, *169*(7), 467-473.
 - There are variations of this model
 - PRISMA-IPD for individual, participant data meta-analyses
 - PRISMA-NMA for network meta-analyses.
- REGEMA: REliability GEneralization Meta-Analysis
 - Sánchez-Meca, J., Marín-Martínez, F., López-López, J. A., Núñez-Núñez, R. M., Rubio-Aparicio, M., López-García, J. J., ... & López-Nicolás, R. (2021). Improving the reporting quality of reliability generalization meta-analyses: The REGEMA checklist. *Research Synthesis Methods*, *12*(4), 516-536.

"Data Collection"

- Including conference proceedings, posters, and others.
 - Careful of duplicate records
- Emailing authors to share data.
 - Open Science Framework: <u>https://osf.io/</u>
 - Journal and/or universities databases
- Store digital copies in a reliable place. Things disappear from the internet.
 - Journal Articles, conference proceedings, posters* etc.

Reliability Generalization

- Reliability generalization is a type of meta-analysis
- Focus on the reliability estimates, usually Cronbach's alpha, vary when the test is applied to different samples (Sanchez-Meca et al., 2019)

Coding Process

Method

Participants

The Italian sample consisted of 512 psychology students attending the University of Florence in Italy, who enrolled in an introductory statistics course in 2008 and 2009 (n = 204 and n = 308, respectively). The course covered the usual introductory topics of descriptive and inferential statistics and their application in psychological research. Participant ages ranged from 19 to 52 (M = 22.3, SD = 5.40, and median = 20); most of the participants were women (81%). This proportion reflects the gender distribution of the population of psychology students in Italy. The Spanish sample consisted of 336 psychology students attending the University of Huelva and Seville in Spain, who enrolled in an introductory statistics course in 2008 and 2009 (n = 206 and n = 130, respectively). The course covered the same topics of the Italian one. Participant ages ranged from 18 to 54 (M = 20.12, SD = 3.81, and median = 19), most of the participants were women (81.5%). This is the gender proportion of the population of psychology students in Spain. All students participated on a voluntary basis after they were given information about the general aim of the investigation (i.e., collecting information to improve students' statistics achievement).

Method

Participants

Participants were 197 undergraduates (79.2% female) in the James Cook University Psychology programs at the Singaporean (70.1%) and Australian (29.9%) campuses. Their age ranged from 17 to 54 years (M = 23.80, SD = 7.24). Among these participants, 150 were currently enrolled in a statistics course (66.0% introductory statistics, 30.0% intermediate statistics, and 4.0% advanced statistics) whereas 47 have completed at least one of the aforementioned courses but were not currently enrolled in a statistics course.

loading. The correlation between the two factors equaled .73. Reliability of the responses to all 20 items remained quite high with Cronbach's coefficient α equaling .95 (n = 129). Given the high correlation between the two factors and Spielberger's recommendation, all the items were summed to create a total score.

Coding Sheet Example

А	В	С	D	E	F	G	Н	I	J
Study	Source	Sub-groups	N	# of Items	R-Overall	R-Exam	R-Help	R-Interpretation	Language
_		19	ni	mi	ai1	ai2	ai3	ai4	18 86
1	Cebollero et al (2012)		95	24	0.936	0.898	0.875	0.844	Spanish
2	Cendales et al (2013)		332	10	0.870		6		Spanish
3a	Chew & Dillon (2015)		204	24		0.890	0.900	0.890	English
3b	Chew & Dillon (2014)		197	24		0.900	0.950	0.880	English
4a	Chiesi et al (2011)	Italian sample	119	24	0.900	0.870	0.920	0.840	Italian
4b		Spanish sample	113	24	0.910	0.910	0.930	0.830	Spanish
5	Guàrdia Olmos et al (2012)		96	24		0.936	0.844	0.898	Spanish
6	Hernandez et al (2015)		397	24	0.920	0.910	0.920	0.810	Portuguese
7	Oliver et al (2014)		256	24		0.870	0.930	0.820	Spanish
8	Sesé et al (2015)		472	24		0.910	0.930	0.840	English
9	Vigil-Colet et al (2008)	5 	159	24	0.910	0.870	0.920	0.820	English
10	Morsanyi, Primi, Handley, Chie	si, & Galli (2012)	105	24	0.880	0.830	0.920	0.830	Spanish
11	Justicia-Galiano et al (2015)		187	24	0.950				English
	Hamid, Shah & Sulaiman (201	4)	342	24	0.884	0.82	0.883	0.78	English

A 🔷	🔗 Study Label	🔗 Year	🔗 Title
2	Howard & Michael (2019)	2019	Psychometri
3	Lu et al., (2018)	2018	Psychometri
4	Bell (2022)	2022	Social Desir
5	McGrath et al., (2015)	2015	Reducing an
7	Anonymous Unpublished	ТВА	
8	Kaufmann et al., (2022)	2022	Self-efficacy
9	Brash, M.	2020	Safety in Nu
10	Hu (2021)	2021	The Impact
11	Cendales et al., (2013)	2013	Psychologic

🔒 Country	🔶 Cronbac	🔶 Number	🔶 Sample S
USA	0.920	14	128
USA	0.980	26	186
USA	0.980	26	218
Canada	0.910	15	28
USA	0.980	14	161
Germany	0.900	42	193
	0.907	14	
USA	0.960	15	87
Colombia	0.960	14	332

臱 Type of P	臱 Database	臱 Coder
Journal Article	Google Scho	Samy
Journal Article	Google Scho	Samy
Dissertation	Google Scho	Samy
Journal Article	Google Scho	Samy
Unpublished		Samy
		Samy
Dissertation	Google Scho	Samy
Dissertation	Google Scho	Samy
Journal Article	Google Scho	Samy

Issues in Meta-Analyses

- Published studies
- The drawer problem
- Fail Safe N

Conducting a Meta-Analysis

Software

- There is specialized software for meta-analysis:
 - Open Meta: https://osf.io/jx2td/wiki/Meta-Analysis%20Tools/
 - R, it's free and open source
 - Meta, metafor, meta-package
 - Too complicated for this presentation
 - Jamovi. Also free and open source.
 - Uses the same package, metafor.

Reliability Generalization

Model estimator [Restricted Maximum-Likelihood V	
Model measures	Raw alpha values	
Moderator type	No Moderator	
Confidence interv	al level 95 %	
🗸 Display model	fit	
Show Plot of Ir	Ifluence Diagnostics	

Howard & Michael (2019)	⊢-∎1	11.31% 0.92 [0.90,
Lu et al., (2018)	•	12.44% 0.98 [0.98
Bell (2022)	•	12.45% 0.98 [0.98
McGrath et al., (2015)	⊢ I	7.64% 0.91 [0.86
Anonymous Unpublished	-	12.43% 0.98 [0.98
Kaufmann et al., (2022)	⊢-∎ 1	11.33% 0.90 [0.88,
Hu (2021)	⊢∎⊣	12.03% 0.96 [0.95]
Cendales et al., (2013)		12.37% 0.96 [0.95]
Santabárbara et al., (2019)	—	8.00% 0.90 [0.85,
RE Model	H	100.00% 0.95 [0.92
	0.85 0.9 0.95 1	

Study Name

Effect Size

BE Model			Declard Effect
Santabárbara et al., (2019)	⊢ I	8.00% 0.90 [0.85, 0.95]	
Cendales et al., (2013)	- 	12.37% 0.96 [0.95, 0.97]	
Hu (2021)	⊢∎⊣	12.03% 0.96 [0.95, 0.97]	
Kaufmann et al., (2022)	⊢ −∎−−1	11.33% 0.90 [0.88, 0.92]	
Anonymous Unpublished	•	12.43% 0.98 [0.98, 0.98]	
McGrath et al., (2015)	⊢ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−	7.64% 0.91 [0.86, 0.96]	
Bell (2022)	•	12.45% 0.98 [0.98, 0.98]	
Lu et al., (2018)	•	12.44% 0.98 [0.98, 0.98]	
Howard & Michael (2019)	⊢-∎1	11.31% 0.92 [0.90, 0.94]	

[3]

Funnel Plot

• A funnel plot tells you about the variability (standard error) of the individual studies against the mean effect size.

- As the study size increases the SE approaches zero.
- Assumes the plot should be symmetrical (that there are as many studies above / below the mean effect size)
 - Lack of symmetry can suggest publication bias, or "small study" bias

Funnel Plot

Outlier and Influential Case Diagnostics

Externally Standardized Residual

DFFITS Values

Howard & Michael (2019)	⊢ _∎(11.31% 0.92 [0.90,
Lu et al., (2018)	•	12.44% 0.98 [0.98,
Bell (2022)	•	12.45% 0.98 [0.98,
McGrath et al., (2015)	⊢−−−− +	7.64% 0.91 [0.86,
Anonymous Unpublished		12.43% 0.98 [0.98,
Kaufmann et al., (2022)	⊢-∎- -1	11.33% 0.90 [0.88,
Hu (2021)	H	12.03% 0.96 [0.95,
Cendales et al., (2013)	H	12.37% 0.96 [0.95,
Santabárbara et al., (2019)	F	8.00% 0.90 [0.85,
RE Model		100.00% 0.95 [0.92,
	0.85 0.9 0.95 1	

Heterogen	eity Statistics						
Tau	Tau²	²	H²	R²	df	Q	р
0.032	0.0011 (SE= 6e-04)	98.77%	81.046		8.000	140.220	<.001

- Cochran's Q
 - Classical measure of heterogeneity
 - The underlying null hypothesis assumes that the true treatment effect is the same across studies and variations are simply caused by chance.
- I² statistic
 - The percentage of variation across studies that is due to heterogeneity rather than chance
 - I² is an intuitive and simple expression of the inconsistency of studies' results.

Fixed Effects vs Random Effects

• Fixed Effects

- conduct if it is reasonable to assume underlying effect size is SAME for all studies
- Test: test of heterogeneity
 - Pooling
 - If significant, go for random effects model
- If there is very little variation between trials then I² will be low and a fixed effects model might be appropriate.

Random Effects

- Conduct if test of heterogeneity is significant.
- Q: p < .05
- Assumes outcome comes from a normal distribution
- More practical

Random-Effects Model (k = 9)							
	Estimate	se	Z	р	CI Lower Bound	CI Upper Bound	
Intercept	0.948	0.0107	88.3	<.001	0.927	0.969	

Note. Tau² Estimator: Maximum-Likelihood

Resources

- <u>Covidence Resource:</u> <u>https://libguides.uttyler.edu/c.php?g=1341980&p=9993128</u>
- Balduzzi, S., Rücker, G., & Schwarzer, G. (2019). How to perform a meta-analysis with R: a practical tutorial. *BMJ Ment Health*, 22(4), 153-160.
- Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2021). *Introduction to meta-analysis*. John Wiley & Sons.
- Del Re, A. C. (2015). A practical tutorial on conducting metaanalysis in R. *The Quantitative Methods for Psychology*, *11*(1), 37-50.

Selected References

- Sánchez-Meca, J., Marín-Martínez, F., López-López, J. A., Núñez-Núñez, R. M., Rubio-Aparicio, M., López-García, J. J., ... & López-Nicolás, R. (2021). Improving the reporting quality of reliability generalization meta-analyses: The REGEMA checklist. *Research Synthesis Methods*, *12*(4), 516-536.
- Sterne, J. A., Sutton, A. J., Ioannidis, J. P., Terrin, N., Jones, D. R., Lau, J., ... & Higgins, J. P. (2011). Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. *Bmj*, 343.
- West SL, Gartlehner G, Mansfield AJ, et al. Comparative Effectiveness Review Methods: Clinical Heterogeneity [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2010 Sep. Table 7, Summary of common statistical approaches to test for heterogeneity. Available from: https://www.ncbi.nlm.nih.gov/books/NBK53317/table/ch3.t2/#