Using APIs to Access Data on Stocks, Social
Media, News and More

Robert P. Schumaker*
Professor - Computer Science Dept., University of Texas at Tyler
Director - Data Analytics Lab, University of Texas at Tyler

Consultant - ORS Research Design and Data Analysis Lab

February 16, 2022

Contents
1 Process Overview

2 API Overview
2.1 Authentication
2.2 DataRequest L
2.3 Data Receipt o
2.4 Data Parsing oo

3 Some Popular APIs for Data Collection

4 Tutorial - Collecting Real-time Data through APIs
4.1 Stock Quote and Stock News Setup
4.1.1 Database Configuration using mySQL Workbench . . .
4.1.2 Scripting Configuration
4.1.3 Collecting Stock Quotes and Stock News
4.2 Twitter

*rob.schumaker@gmail.com

1 Process Overview

This document will provide a demonstration of several data collection pro-
grams that researchers can use for their own projects. In particular, readers
will learn how to collect per minute stock prices, news articles tied to specific
stock tickers, and social media posts from Twitter.

Collecting web data has come a long way in the last 30 years. From copy/pasting,
to writing web scrapers and parsers, to using specific interfaces (APIs) to
collect precise data.

This tutorial will explore the history and use of APIs and provide a brief
tutorial for certain data collections.

2 API Overview

Collecting real-time data can be an exciting and richly rewarding academic
endeavor. There are plenty of free data feeds available and coupled with
modern data extraction techniques, can provide research opportunities that
were previously unobtainable. In this overview we will barely scratch the
surface of obtaining web data.

API, or Application Program Interface, is a way of connecting computers and
programs. The term was originally coined in the 1940s and used to describe
early software programming libraries. The definition has evolved and now
describes a networked computer method of easily sharing data. The API
involves a data provider who governs the individuals and/or entities that
have data access, how the data is accessed as well as how much data can be
accessed. Because of their proprietary nature, each data provider will have
their own unique way of requesting and receiving data. While it may be
unique between data providers, the process is roughly the same.

Authentication (optional)

Request data

Receive data

Parse data

Let’s explore each area in more detail.

2.1 Authentication

Authentication is the process of checking a user’s access credentials. This
step can be optional by some data providers or be used to allow different
levels of data access (guest vs authenticated user). Methods of authentica-
tion could include username/password combinations or the use of generated
tokens (e.g.; OAuth), or an api-related key. This step verifies the user is
credentialed and known.

Some data providers will also include Authorization along with authentica-
tion. Authorization establishes the level of data access or grants access to
specific data. These two concepts are different as a user could be authen-
ticated (yup you logged in) but not authorized (nope, you have no access
here).

The data provider will let you know whether authentication is necessary.

2.2 Data Request

The method of requesting data from the data provider will vary between
providers. Most use some type of keyword phrasing with a proper syntax.
Data requests can be done through url requests or specific keywords directed
towards a data provider’s listener. For example, requesting flight prices from
Skyscanner can be done via a url request formatted like this:
https://partners.api.skyscanner.net/apiservices/browsequotes/v1.0/
{country}/{currency}/{locale}/{originPlace}/{destinationPlace}/
{outboundPartialDate} /{inboundPartialDate} ?{apiKey={apiKey}}, where
{apiKey} is your authentication token.

Likewise, requesting weather forecast data from OpenWeather is also done
via a url request formatted like this:

hitps:/ /api.openweathermap.org/data/2.5/weather?lat={lat } &lon={lon } &
appid={apiKey}.

Contrast this to Twitter’s firehose approach where data requests are directed
to a listener and requests must be made programmatically.

Url-based data requests do not necessarily require software programming ex-
perience, although it could be helpful. A carefully crafted Excel spreadsheet
could perform url-based data collection using smart-tags or minimal VBA
programming. Whereas listener-based data collection will require a program
to perform the authentication, data negotiation and data handling opera-
tions. For well-known APIs there is generally software available either from
the data provider or third-parties.

The exact syntax and use of the data request will be defined by the data
provider in a data dictionary or API documentation.

2.3 Data Receipt

Once a proper data request is made, the data provider will return data to
the requester. In the case of a url-based request the transaction is considered
closed and any further requests will require the authentication mechanism
again if applicable. In the case of a listener-based request the transactional
data flow continues until either side severs the connection.

The data that is returned will generally fall into one of three categories:
unformatted text, xml or json. Although other boutique data schemas exist,
these three are the most typical and easiest to handle. Unformatted text
is typical for simple requests where only one response is given. XML, or
eXtensible Markup Language, is an older standard that uses angled brackets
with a data hierarchy. The following is an XML example:

<breakfast_menu>
<food>
<name>Belgian Waffles</name>
<price>$5.95</price>
<description>Two of our famous Belgian Waffles with plenty of
real maple syrup</description>
<calories>650</calories>
</food>
<food>
<name>Strawberry Belgian Waffles</name>
<price>$7.95</price>
<description>Light Belgian waffles covered with strawberries
and whipped cream</description>
<calories>900</calories>
</food>
</breakfast_menu>

The most common form of data exchange is using JSON. JSON, or JavaScript
Object Notation, originally was created for the JavaScript programming
language in 1999, but eventually separated and became its own language-
independent standard in 2013. Its structure is similar to XML but with less
overhead. The following is a JSON example:

"breakfast_menu": {

"food": [{
"name" : "Belgian Waffles",
"price": "$5.95",
"description": "Two of our famous Belgian Waffles with
plenty of real maple syrup",
"calories": "650"
.
{
"name" : "Strawberry Belgian Waffles",
"price": "$7.95",
"description": "Light Belgian waffles covered with
strawberries and whipped cream",
"calories": "900"
3]

}
+

Regardless of the structure the data provider uses to return the data, there
are techniques to extract what you need.

2.4 Data Parsing

Turning returned data into something useable to the researcher is its own
art form. With unformatted text, the entirety of the response is typically
useable. With XML and JSON a bit of post-processing is necessary. Luckily
there are many software libraries, stand-alone programs, or even online ex-
traction tools that can do these tasks for us. It isn’t perfect and may require
some further tweaking depending on your needs.

One such example for extracting XML data is https://onlinexmlitools.com/
convert-rml-to-text. This tool strips the xml tags and leaves the entirety of
text. Not great if you need specific data. The typical method is to create
XSLT stylesheets and extract the data using that. However, Microsoft Excel
offers some XML conversion functionality. For more information on convert-
ing XML with Excel please see hitps://stackoverflow.com/questions/9925108/
extract-data-fields-from-zml-into-excel.

An example for extracting JSON data is https://jsonpathfinder.com/. This
online resource can both interrogate JSON output but also search and re-
turn specific data using the "Path" function. For more information on using

JSON Path, please see hitps://www.toolsqa.com/rest-assured/jsonpath-and-
query-json-using-jsonpath,/.

Worst case scenario the data is in a non-standard form in which a program-
mer must create a customized parser to extract the necessary data. Luckily
we don’t run into that too often nowadays.

3 Some Popular APIs for Data Collection

A quick Google search can turn up hundreds of available APIs. Some better
than others. Here is a quick listing of a variety of APIs, what they offer, and
a link to their documentation. Hopefully one of them inspires you.

e API-Football - soccer data on 905 leagues and cups
https://www.api-football.com/documentation-v3

e API-NBA - basketball data
https://rapidapi.com/api-sports/api/api-nba

e Brave NewCoin - cryptocurrency data
https://bravenewcoin.com/developers

e ExchangeRates - currency exchange data
https://exchangeratesapi.io/documentation/

e Facebook - social media data
https://developers.facebook.com/docs/

e FBI Crime Data - find crooks
https://api.data.gov/docs/fbi/

e Financial Times - financial news data
https://developer.ft.com /portal /docs-api-reference

e IMDB - movie data
https://developer.imdb.com /documentation/

e NewsAPI - worldwide news stories
https://newsapi.org/s/google-news-api

e OpenWeather - weather data
https://openweathermap.org/api

e Parler - social media data
https://github.com /KonradIT /parler-py-api

e Pinterest - social media data
https://developers.pinterest.com /

e Skyscanner - flight data
https://skyscanner.github.io/slate /#api-documentation

e SportRadar - cricket sports data
https://developer.sportradar.com/docs/read/cricket /Cricket v2

e SportsdatalO - baseball data
https://sportsdata.io/developers/api-documentation /mlb

e VIN Decoder - vehicle manufacturing data
https://vpic.nhtsa.dot.gov/api/

e Yahoo Finance - stock price data
https://www.yahoofinanceapi.com/

4 Tutorial - Collecting Real-time Data through APIs

The following tutorials assume that you have a database environment to
store your data and a Java Runtime Environment.

If you do not have a database environment, please refer to the prior tutorial
Setting up an Amazon Web Services (AWS) and RStudio Data Connective
Environment and perform sections 3 to 3.3.2. Please see the ORS Data Sci-
ence Resources webpage at hitps://uttyler.edu/research/ors-research-design-
data-analysis-lab/resources/data-science or reach out to the author for the
tutorial.

If you do not have a Java Runtime Environment, please refer to the prior
tutorial Collecting Real-time Tweets through Tuwitter’s Firehose and per-
form section 3.4.1. Please see the ORS Data Science Resources webpage at
https:/ /uttyler.edu/research/ors-research-design-data-analysis-lab /resources
/data-science or reach out to the author for the tutorial.

4.1 Stock Quote and Stock News Setup

These instructions will get your research environment ready to collect per-
minute stock quotes and/or stock news. Once setup it is recommended to

collect data no more often than once per day.

4.1.1 Database Configuration using mySQL Workbench

The following instructions will setup your database for both Stock Quotes
and Stock News. If you will be collecting both, you only need to perform
these instructions once.

10.
11.

12.

. Open mySQL Workbench

Click the plus sign in a circle to create a connection to the database
server

For Connection Name pick a name for your connection. The name
doesn’t really matter, it’s to help you find it

For Hostname on a local machine, enter 127.0.0.1

For Hostname on an Amazon RDS instance, enter the RDS endpoint
(e.g., oceanplatform0.cdb7tnix15tn.us-west-2.rds.amazonaws.com)

For Username, enter root
Click Test Connection and enter the mySQL admin /root password

If you successfully made the mySQL connection, click Ok to exit the
Setup New Connection dialog box

If you were unsuccessful making the mySQL connection, find a file
named mysqld.cnf, open it for editing, put a # symbol in front of bind-
address = 127.0.0.1, and either restart the mysql process or reboot the
computer

Click your new connection under mySQL Connections
Click File, Open SQL Script and open SP500 _dbsetup.sql

Modify lines 43-547 to reflect the stock ticker symbols you wish to
collect quotes. Each line represents one company. Feel free to ex-
pand /reduce the number of companies. The only required field is the
first one (CompSymbol) which is the stock ticker. The other fields can
be left blank, just keep the commas intact.

13.

14.

15.

Modify near line 7346, select a username/password for SP500

If you change the username, be sure to rename 'webwrite’ to your new
username in the five lines near line 7347

Click the lightning bolt to execute the script. If everything goes well
you should have all green checkmark circles in the Action Output
window

4.1.2 Scripting Configuration

The Stock Quote and Stock News application is text-based and requires no
installer. However, there will be some configuration necessary.

The configuration can initially seem overwhelming. However, a careful re-
view of these instructions should be helpful. If you find yourself stuck, reach
out to the author.

The configuration file services both Stock Quotes and Stock News, and is
designed to run sequentially. It has several major parts:

1.

2.

6.
7.

File path to the SP500.Quotes folder
File path to the SP500.News folder
Location of your java interpreter (from OpenJDK you installed earlier)

Classpath to the program libraries. The path should be identical for
all of the jar files. Just a lot of copy/pasting or Edit/Replace

The package.program to run, in this case it is sp500.quotes.QuotesMain
and spbH00.news.NewsMain respectively

Database location and schema

Database username and password

What to do...

e Download the SP500.zip file from the ORS Resource webpage

e Unzip the SP500.zip file and move the SP500 folder to a directory

location of your choosing

e Open the SP500 folder and open the SP500.sh for editing. It is a text

file, so just about any text editor will work

The first line is #!/bin/bash. This has special meaning in linux-based
operating systems but not so much in Windows. If your computer is
Windows-based, remove this line

The next two lines are for Stock Quotes. If you are not collecting quote
data, remove these two lines

The last two lines are for Stock News. If you are not collecting news
data, remove these two lines

In the unmodified version of the script, lines 2 and 4 set the file path to
the SP500.Quotes and SP500.News folders respectively. My file path
to SP500.Quotes is /home/rschumaker/Google Drive/OceanPlatform/
SP500.Quotes. On my Windows machine it is C: | Users|robsc | Desktop
| SP500|SP500.Quotes. You need to find the exact path of your
SP500.Quotes folder. Modify the file path for both SP500.Quotes and
SP500.News (if applicable)

In the unmodified version of the script, lines 3 and 5 run the Quotes and
News scripts.The first section /usr/lib/jum/jdk-17.0.2/bin/java is the
file location of your java interpreter. This file path must be changed.
You must find the java interpreter and copy it’s path. On my Windows
machine I would change it to "C:|Program Files|jdk-17.0.2|bin|java”
with the double-quotes

The next section is the path to the SP500.Quote and SP500.News
folders respectively. My classpath for SP500.Quotes in linux is /home/
rschumaker/GoogleDrive/OceanPlatform/SP500. Quotes/. On my Win-
dows machine it is C:| Users|robsc|Desktop | SP500|SP500.Quotes .
You need to find the exact path to your respective folders. Replace all
instances of /home/rschumaker/GoogleDrive/OceanPlatform/ with
your path

If you are using a Windows machine, change all colons in the classpath
area to semicolons. Please do not use Replace All as there are colons
outside of the classpath area

Next is the location of your database and schema. Enter the IP address
or endpoint information to your database. If you are using a schema
different from the SP500 dbsetup.sql schema, please enter it after the
3306:/

10

e Enter your database username and password. You set these values in
SP500 dbsetup.sql near the bottom of the script

e Save the file and close it

e If you are using a Windows machine, rename the file extension to .bat

4.1.3 Collecting Stock Quotes and Stock News

Congratulations, you made it to this point. Assuming that the database
server is correctly setup, OpenJDK is installed, the file path configuration
is perfect and you have said your required 1,000 Hail Mary’s, SP500.sh is
ready to run.

1. On linux-based machines, use terminal to navigate to the SP500 direc-
tory and type sh SP500.sh

2. On Windows-based machines, use the command prompt to navigate to
the SP500 directory and type SP500.bat

3. You should now see a line Acquiring Quotes for... and your stock
ticker. To avoid blacklisting by the stock ticker service, there is a one
minute pause between tickers.

4. The most common error that could occur is the Are you a robot.
This means that you have stopped/started the program too quickly,
someone else at the University is using the program, or Bloomberg’s
anti-robot algorithms got around my anti-anti-robot evasion routines
in my program. It happens. What tends to work best is to run the
program at home rather than at the University.

5. Following stock quote data gathering, the script will then collect the
20 most recent news articles for each stock ticker. Again there will be
a pause between each article, but not as great a pause as before.

4.2 Twitter

To learn how to gather Tweet data, please refer to the prior tutorial Collecting
Real-time Tweets through Twitter’s Firehose. Please see the ORS Data Sci-
ence Resources webpage at https://uttyler.edu/research/ors-research-design-
data-analysis-lab/resources/data-science or reach out to the author for the
tutorial.

11

	Process Overview
	API Overview
	Authentication
	Data Request
	Data Receipt
	Data Parsing

	Some Popular APIs for Data Collection
	Tutorial - Collecting Real-time Data through APIs
	Stock Quote and Stock News Setup
	Database Configuration using mySQL Workbench
	Scripting Configuration
	Collecting Stock Quotes and Stock News

	Twitter

