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INTRODUCTION

»What is Machine Learning ?

= Machine Learning is a field of study that gives computers the ability to “learn”
without being explicitly programmed

. Prediction
. Classification

Samuel AL‘ IBM J. Research & Develoiment‘ 1959‘ vol. 3 ‘3“ 210-229
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APPROACHES

»SUPERVISED LEARNING (Classification / Prediction)

Provide training set with features and solutions




APPROACHES

»STANDARD MACHINE LEARNING

»ADVANCED MACHINE LEARNING

Based on Artificial Neural Networks (Deep Learning)
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APPROACHES

> L i near Reg ress i 0 n ‘ Simple Linear Regression
DL =0y + 01X 40,0k + o AOpxh P =12, ;
? = GTX X

https://medium.datadriveninvestor.com/machine-learning-101-
part-1-24835333d38a

- Gradient Descent by Louis Augustin Cauchy in 1847

Cost Function to Minimize
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APPROACHES

»Linear Regression

Peaks

O+t = BF — yV,)(6)

Vol(8)==XT (X6 — Y)




APPROACHES

> Log iStiC RegreSSion ‘ Simple Lirlear Regression .
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APPROACHES

»Logistic Regression

Peaks

O+t = BF — yV,)(6)
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APPROACHES

» Support Vector Machine

G(xj,x) = exp(—|lx; — xl1?)

G(xj,xx) = (1 +x;'x), where g is in the set {2,3,...}.
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https://medium.com/@LSchultebraucks/introduction-to support-vector-machines-9f8161ae2fcb
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APPROACHES

»SUPERVISED LEARNING (Classification / Prediction)
* Support Vector Machine (SVM)

Used for regression as well as classification

Muliti-class classificaticn

https://www.mathworks.com/matlabcentral/fileexchange/62061-multi-class-svm



APPROACHES

»SUPERVISED LEARNING (Classification)
» Logistic Regression

* Support Vector Machines
* k-Nearest Neighbors

» Decision Trees and Random Forests



SECTION 1: Learner App

»Home Value Classification: 9 features to classify high vs low medianHouseValue

longitude: A measure of how far west a house is; a higher value is farther west

latitude: A measure of how far north a house is; a higher value is farther north

housingMedianAge: Median age of a house within a block; a lower number is a newer building
totalRooms: Total number of rooms within a block

totalBedrooms: Total number of bedrooms within a block

population: Total number of people residing within a block

households: Total number of households, a group of people residing within a home unit, for a block Demo with N=5000

medianincome: Median income for households within a block of houses (measured in tens of thousands of US Dollars) 70% Training Data

medianHouseValue: Median house value for households within a block (measured in US Dollars) 30% Test Data
Models Trained:
Logistic Regression
SVM

oceanProximity: Location of the house w.r.t ocean/sea

https://www.kaggle.com/camnugent/california-housing-prices



SECTION 1: Learner App

»Prediction of House Price Classification Problem

Confusion Matrix

True 1 | True Positive False Negative =) Totg| Positive
Class | False Positive True Negative =) Total Negative

1 Predicted
Class

True Positive Rate = True Positive / Total Positive

True Negative Rate = True Negative / Total Negative = 1 — False Positive Rate



SECTION 1: Learner App

»DATA IMPORT & CLASSIFICATION LEARNER INITIALIZATION

4 New Session from Arguments - O X
Original data set: Ttrain
Data set Validation
42
Data Set Variable (®) Cross-Validation
(e 3300:11 table v Protects against overfitting by partitioning the 41
data set into folds and estimating accuracy
on each fold.
Response
: 40
hi lo label doubl 0 .. 1 v
{ e it | Cross-validation folds: E
39
(_) Holdout Validation
Predictors Recommended for large data sets 38 |-
@
=}
Name Type Range N — =
Percent held o 25 3 = a7k
longitude double -124.35 . -114.56 - o
latitude double 32.57 .. 41.92
housing_median_age double 2.52 (") Resubstitution Validation 36
total_rooms double 25 - 39320 No protection against overfitting. The app
total_bedrooms double 3..6210 uses all the data for both training and 35
. validation. L4
population double 13 . 18305
L2 |k hald Ansihl E__E2FR0 h
34
[ addAal | [ RemoveAl | <
33F
How to prepare data Read about validation
1 1 I 1 I 1 1 I 1 1
) -124 -123 -122 121 -120 -119 -118  -117  -116  -115
/%y Response variable is numeric. Distinct values will be interpreted as class labels. Start Session Cancel

longitude




SECTION 1: Learner App

»DATA IMPORT & CLASSIFICATION LEARNER INITIALIZATION

classificationLearner (Ttrain, 'hi lo label');

Demo with logistic regression and linear SVM




SECTION 2: Raw Data Analysis

Visualize the data, Summarize variables, data cleaning, pre-processing 1if
needed
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SECTION 3: Correlation Analysis

FIND VARIABLE CORRELATIONS TO EACH OTHER AND THE MEDIAN HOUSE VALUE
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SECTION 4: Logistic Regression

SPLIT INTO TRAINING AND TEST DATA AND FIT LOGISTIC REGRESSION MODEL

Estimated Coefficients:

Estimate SE tstat pValue
(Intercept) -154.19 14.421 -10.692 1.1065e-26
longitude -1.7683 0.17448 -10.135 3.8752e-24
latitude -1.8133 0.18885 -9.6018 7.8546e-22 mdl = fj_tg]_m( [Ttrain (: , 1:9)
housing median age 0.044239 0.0051484 8.5928 §.4901e-18 ) ) . ) )
total_r:oms - 0.0003444 9.7387e-05 3.5364 0.00040561 table (y) ] ’ 'Distribution’ ’ 'binomial' ) M
total bedrooms 0.00080298 0.0008425% 0.95259 0.3408¢
population -0.0023529 0.00020995 -11.207 3.7737e-29
households 0.0039573 0.0009455% 4.185 2.8517e-05
median_income 1.0172 0.053504 18.87 2.0101e-79
ocean proximity INLAND -0.053285 0.24937 -0.21368 0.6308
ocean_proximity ISLAND 0 0 NaN NaN
ocean proximity NEAR BAY -0.10616 0.19861 -0.53446% 0.593
ocean proximity NEAR OCEAN 0.11076 0.15948 0.6945 0.48737

3500 observations, 3488 error degrees of freedom

Dispersion: 1 Remove Insignificant features

Chi~2-statistic ws. constant model: 1.83e+03, p-value = 0
|




SECTION 5: Outliers

DIAGNOSTICS OF MODELS- IDENTIFY OUTLIERS c ot of |
0.25 | . ase ordler plot o . everagel
mdll = fitglm([Ttrain(:,[1:4 6:8]) ozl «
table (y, 'variablenames', {'H1 lo label'})],"
Distribution', 'binomial') ;
o 0.15
k 0.1 %
plotDiagnostics (mdll, 'leverage') « ) x
0.05 - < x . X .
“ x Ex % §:
< x>
¥ ¢ X< "
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SECTION 6: Classification (Clean Data)

TEST MODEL FOR TWO CLASS CLASSIFICATION (Logistic Regression)

2 class Confusion Matrix

high 252 104

Test Data N = 1500
(30% of 5000)

True Class

Missing Values
Insignificant Features
Outliers

low 69

high low
Predicted Class



SECTION 7: SVVM Classification

REGULARIZATION OF VARIABLES DONE AUTOMATICALLY, NO NEED TO CHOOSE FEATURES
SEPARATELY AS WAS DONE EARLIER FOR LOGISTIC REGRESSION

SVM - 2 class

high 255 101 28.4%

Test Data N = 1500

g low 69 6.0% (30% of 5000)
O
= Linear SVM

21.3% 8.6% SVMModel = fitcsvm(Ttrain(:,1:9),vy, 'standardize', true);

high low

Predicted Class
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ITICA

SVM Classi

LINEAR vs RADIAL BASIS FUNCTION (RBF) KERNEL

SECTION 8
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SECTION 9: Multiclassification (SVM)

Also perform one to one class

ONE CLASS vs REST

High vs Low/Mod

Mod vs Low/High

Low vs Mod/High

True Class
True Class
True Class

1 103 253

1 139 249

1 -1 1 i
Predicted Class

Predicted Class Predicted Class

Mdl =
fitcecoc (Ttrain(:,1:8),vy, 'Learners',t, 'Coding', coding, 'ResponseName', responseName, ...

'"PredictorNames',predictorNames, 'ClassNames',classNames) ;




SECTION 10: Multiclassification (SVM)

LOW vs MOD vs HIGH CLASS 3 class SVM classification
high 258 2 96 27.5%
Mdlp =
fitcecoc (Ttrain(:,1:8),y, 'Learner "
s',t,'FitPosterior', true, ... @
% low 1 257 130 33.8%
'ClassNames', {'low', 'mod', '"high'} =
;oo
'Verbose', 2) ;
mod 70 56 16.7%

high low mod
Predicted Class




CONCLUSION

» Classification divides the data into different groups

»Look at the raw data and understand features in relation to class designation

»Several codes are available to perform classification
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