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INTRODUCTION

»What is Machine Learning ?

=Machine Learning is a field of study that gives computers the ability to “learn”
without being explicitly programmed

. Prediction
. Classification

Samuel AL, IBM J. Research & Deve/oiment, 1959, vol. 3 ‘3i, 210-229



INTRODUCTION

»What is Deep Learning?
TRANDITIONAL MACHINE LEARNING
= Deep learning is a branch of machine 0
learning that teaches computers to do what (d _—
comes naturally to humans: learn from gl .. S .
experience.
DEEP LEARNING
= Deep learning uses deep neural network B o o e
with several layers to learn. d e ==
Input Feature Extraction + Classification

Output

https://www.guru99.com/machine-learning-vs-deep-learning.html
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INTRODUCTION

»What is Deep Learning?

= Deep learning describes models that utilize
multiple layers to represent latent features
at a higher and more abstract level

= The representations are learned from data
rather than constructed by human
engineers

Deep neural network
Input layer Multiple hidden layers Output layer

https://www.ibm.com/cloud/learn/neural-networks




INTRODUCTION

» Inspiration from biological Neuron
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INTRODUCTION

» From biological neural to artificial neural network

Deep neural network

Input layer Multiple hidden layers Output layer
Important:
/ /"

weights

Output of each neuron produces 1 or 0

OO0

Brain centers

Sensory receptors Neurons




INTRODUCTION

» How Artificial Neural Network Works?
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What is Perceptron: A Beginners Guide for Perceptron [Updated]
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INTRODUCTION

» Activation Functions

Sigmoid | Leaky ReLU
0'(.'13) - 1 ma;X(O.].CU, :IJ)
14+e—®

tanh Maxout
tanh(z) o max(w? z + by, wlz + by)

RelLU / ELU .—/
T x>0
maX(O, m) _ ) {a(ex —1) z<0 - .

-2

https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-9689331ba092



APPROACHES

» Gradient Descent
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INTRODUCTION

» Application of Deep Learning

Raw pixels Neural network Class label

I Environment

Sensor

| VNO tumor

Cruise Assistance Image Recognition
Input image Convolution RELU Pooling Fully conected Oulput
layer layer layer layer A classes
Medical Imaging B
10 -1 &

http://dafne%20van%20kuppevelt/
https://www.semanticscholar.org/paper/Human-like-Autonomous-Vehicle-Speed-Control-by-Deep-Zhang-
Sun/9ed56cf584eb66bdf576fcc58e84fechb2f51f547
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APPROACHES

» Convolutional Neural Network (Finite Impulse Response)
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https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53



APPROACHES

» Convolutional Neural Network (Pretrained Network)

GoogLeNet, a pretrained deep convolutional neural network (CNN or
ConvNet)




APPROACHES

»Example 1: Simple Image Classification using GoogleNET (using App)

MathWorks Cube




APPROACHES

» Example 2: Classify Text Data Using Convolutional Neural Network

Description Category Urgency Resclution Cost
{'"Items are occasionally getting stuck in the scanner spools.' } {'Mechanical Failure'} {'Medium'} {'Readjust Machine' } 45
{'"Loud rattling and banging sounds are coming from assembler pistons.'} {'"Mechanical Failure'} { "Medium"} {'Readjust Machine' } 35
{'There are cuts to the power when starting the plant.' } {'Electronic Failure'} {"High" } {'Full Replacement' } 16200
{'Fried capacitors in the assembler.’ } {'Electronic Failure'} {"High" } {'"Replace Components'} 352
{'"Mixer tripped the fuses.' } {'Electronic Failure'} {'Low' } {'kdd to Watch List' } 55
{'Burst pipe in the constructing agent is spraying coolant.' } {'Leak' } {"High" } {'Replace Components'} 371
{'Z fuse is blown in the mixer.' } {'Electronic Failure'} {'"Low" } {'Replace Components'} 441
{'Things continue to tumble off of the helt.' } {'Mechanical Failure'} {'"Low" } {'"Readjust Machine' } 38




APPROACHES

» Example 2: Classify Text Data Using Convolutional Neural Network

Network Architecture




APPROACHES

» Example 2: Classify Text Data Using Convolutional Neural Network
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APPROACHES

»Example 3: Regression model using CNN to predict the angles of rotation of

handwritten digits.
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APPROACHES

»Example 3: Regression model using CNN to predict the angles of rotation of
handwritten digits.
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APPROACHES

»Example 3: Regression model using CNN to predict the angles of rotation of
handwritten digits.
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APPROACHES

»Example 3: Regression model using CNN to predict the angles of rotation of
handwritten digits.
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OUTLINE

»DIFFERENT DEEP LEARNING APPROACHES WITH EXAMPLES

Convolutional Neural Network
Long Short-Term Memory




APPROACHES

» Long Short-Term Memory (LSTM) Network (Infinite Impulse Response)

Special category of network that are suitable for learning long-term
dependencies.

https://towardsdatascience.com/machine-learning-recurrent-
neural-networks-and-long-short-term-memory-Istm-python-
keras-example-86001ceaaebc




APPROACHES

Example 4: LSTM Regression Network for Time Series Forecasting Using Deep
Network Designer (App)
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APPROACHES

Example 4: LSTM Regression Network for Time Series Forecasting Using Deep
Network Designer (App) T tamngopios  — O X

SOLVER

Solver - adam v
InitizlLearnRate 0.005 =5
BASIC

ValidationFreguency ’—50@
|Maprnchs 500-=

MiniBatchSize 1283
ExecutionEnvironment | auto v
SEQUENCE

SequenceLength |Inﬂgest—v|
SequencePaddingValue ’—0@
SequencePaddingDirection | right v
ADVANCED

L2Regularization 0.0001 @
GradientThresholdMethod ‘Znom v
GradientThreshold 15




APPROACHES

Example 4: LSTM Regression Network for Time Series Forecasting Using Deep
Network Designer (App)
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CONCLUSION

»Deep Learning Networks can be used for regression and classification

»Forecasting or Prediction is a salient feature of ANN

»Need large amount of data to train the models
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