

<u>MENG 4345 – Energy Conversion Systems</u> <u>Course Syllabus</u>

Semester /	Spring 2025
Year Catalog	This course introduces students to the different energy conversion systems as an
Description	
F	integrated form of application of different knowledge bases such as:
	thermodynamics, chemistry, heat transfer and fluid mechanics. Analysis and design
	of systems for energy conversion and storage will be carried out with emphasis on
	efficiency, performance and environmental impact. Graduate students are expected
	to carry out a major project as an assignment within this course.
Prerequisites	MENG 3316
Section	050 & 051
Number	
Instructor Name	Dr. Mohammad A. Rafe Biswas
Contact	Office: HEC A214 or via Zoom (details posted on Canvas)
Information	E-mail: mbiswas@uttyler.edu
	Phone & Zoom ID: 903 566 6115
Class Type /	Lecture face-to-face in HEC A217 and Zoom synchronous in RBN 2011– Details on
Instruction	Canvas
Mode /	
Location Class Time	Mo We 6:30 PM – 7:50 PM
Office Hours	MW 2:30 to 4 pm or By appointment (in person or Zoom)
No. of Credits	3
Required	Demirel, Yaşar. Energy : Production, Conversion, Storage, Conservation, and
Textbook	Coupling, Praxis, 2012. (ProQuest Ebook Central,
	https://ebookcentral.proquest.com/lib/uttyler/detail.action?docID=883989)
Optional	Rauf, S. Bobby. (2011). Finance and Accounting for Energy Engineers. Fairmont
References	Press, Inc. Retrieved from
	https://ebookcentral.proquest.com/lib/uttyler/reader.action?docID=3239056&ppg=1
	Physics of Energy Conversion by Katharina Krischer, Konrad Schönleber, and
	Konrad Schönleber, De Gruyter, Inc., 2015.
	(https://ebookcentral.proquest.com/lib/uttyler/reader.action?docID=1867270)
	Fuel Cell Fundamentals by Suk-Won Cha, Whitney Colella, Fritz B. Prinz, and
	Ryan O'Hayre, John Wiley & Sons, Incorporated, 2016.
	(https://ebookcentral.proquest.com/lib/uttyler/reader.action?docID=4505263&ppg=1
) Additional Material on Canvas: Websites, Class Handouts, Tutorials on MATLAB
	and Simulink by Mathworks, Inc.

Additional	MATLAB, Simulink & Simscape by MathWorks, Inc. (available	through virtual
Rules and		
Requirements	desktop = one.utivier.edu) and/or other software	
	The use of cellular phones during lectures is prohibited. If a student use (call, text, internet), he/she will be asked to leave the classroom and the the class will apply. It is highly recommended to keep your cellular pho	penalties of missing
Evaluation Method	Grading: Assignments, Class Participation and Conduct Quizzes/Exams Project (Energy & Cost Analysis of a set of assigned systems)	30% 20% 50%
Grading Policy / Scale	Letter grades, scale: A: 90 – 100; B: 80 – 89; C: 70 – 79; D: 60 – 69; F: < 60	
Important Events / Dates	Census date: Jan 27th Last date to withdraw from one or more 15-week courses: March 31 st Final Report & Presentation: Week of April 14 Final Quiz/Exam during finals week: Week of April 28	
Attendance / Makeup policy / other rules	Attendance and participation to lectures are expected per university's <u>C</u> <u>policy</u> . Any violation of the Student Behavior (see below) will result in reduction for each incident. Students may appeal the grade reduction to valid excuse or reason can be given. Make-up assignments if approved during finals week.	1% or more grade the instructor if

Course	Course Learning Objectives
Learning	By the end of this course students will be able to:
Objectives / ABET & PEOs Relation	 Demonstrate knowledge of the different energy conversion systems and their typical applications. Analyze, perform and conduct preliminary design of various energy conversion systems. Explain the physics of the environmental issues, including the greenhouse effect and global climate change Conduct energy and cost analysis of various energy conversion systems, as well as compare social acceptability and environmental consequences of such systems Apply engineering design and analysis techniques to emerging energy
Tentative Topics / Course Plans	 conversion technologies Types of Energy Mass and Energy Balances/Energy Conservation Selected Energy Production and Conversion systems Fossil fuel systems including combustion engines Renewable systems including solar and wind energy Alternative technologies including Fuel cell Ethical & Environmental impacts & Engineering Economics
University Policies	https://www.uttyler.edu/offices/academic-affairs/files/syllabus-information.pdf