

<u>MENG 4326 – Finite Element Analysis</u> <u>Course Syllabus</u>

Semester / Year	Spring 2025
Catalog	A required introductory course providing undergraduate engineering students with
Description	fundamentals of finite element (FE) concepts, analysis, and applications in real-world
	problems. A software package will be selected for use a learning support tool, which
	also provides students with a marketable skill. The course includes a project as a major
	component.
Prerequisites	MENG 3401 – Thermodynamics, MENG 3309 Mechanical Systems Design (pre-
	requisite or co-requisite)
Section Number	030
Instructor Name	Dr. Ermias G. Koricho
Contact	Email: ekoricho@uttyler.edu
Information	Phone:
	Office:A220
Class Type /	Face-to-face / Lecture / HEC 0A216
Instruction Mode	
/ Location	
Class Time	Tu/Th 5:00 PM – 6:20 PM
Office Hours	M/F 11:00 AM – 12:00 PM, Tu 2:00 PM – 3 PM or by appointment
No. of Credits	3 credits (Lecture)
Required	• Finite Element Analysis: Theory and Application with ANSYS – Saeed
Textbook &	Moaveni
Resources	• Finite Element Simulations with ANSYS Workbench 24: Theory,
	Applications, Case Studies – Huei-Huang Lee
	• Students taking courses in Mechanical Engineering (ME) are expected to
	have a laptop at their disposal. For more details, refer to the Student Laptop
	Policy at the Department of Mechanical Engineering
	https://uttyler.smartcatalogiq.com/en/2022-2023/Catalog/College-of-Engineering
Optional	• Analysis of Machine Elements Using SolidWorks Simulation 24 – S.S. Nudehi
References	and J.R. Steffen
Additional Rules	AI tools are allowed to support students' learning and productivity, provided that their use
and	aligns with academic integrity standards. When required, students must disclose their use
Requirements	of AI.
Evaluation	Grading System: Assignments 30%
Method	(Lab HW 10%, Lecture HW 8%, Lab assignment report 12%)
	Quizzes 5%
	Midterm Exam 17.5 %
	Final Exam 17.5 %
	1 mai 1 10 jeet 50 %
Grading Policy /	Letter grades, scale:
Scale	A: 90 – 100; B: 80 – 89; C: 70 – 79; D: 60 – 69; F: < 60
Important Events	Census date: 01/27/2025
/ Dates	First drop for non-payment: 01/21/2025
	Exam date: Mid-term (March 6, 2025), Final Exam (April 29, 2025)

	Spring Break: 03/17/2025-03/21/2025 Last date to withdraw from one or more 15-week courses: 03/31/2025
Attendance / Makeup policy / other rules	Regular attendance is imperative if you want to do well in this course. Therefore, regular attendance is highly recommended. In case you have to miss a class, it is your responsibility to keep up with the class work and be informed of all announcements made in the class on HomeWorks, tests etc. No makeup exams will be authorized without providing an official document showing that your absence is in line with university rules.
Course Learning	By the end of this course, students will be able to:
Objectives / ABET & PEOs	1. Demonstrate an understanding of the fundamental concepts and general steps of the finite element analysis (FEA).
Relation	2. Apply science and math concepts using FEA tools to identify, formulate and solve engineering problems.
	3. Apply FEA techniques to engineering design with broader considerations.
	4. Select and integrate FEA for the appropriate part in the design process to support
	and justify design decisions with broader considerations.
Tentative Topics	Topical Outline:
/ Course Plans	
	For Theory Classes (45 minutes per week)
	From Finite Element Analysis, Theory and Application with ANSYS, 4th Edition, book:
	a Introduction to Finite Element Formulation approaches
	b. One-dimensional structural analysis, heat transfer and fluid flow problems
	2. Chapter 4: Axial Members, Beams and Frames
	a. Members under axial loading
	b. Finite Element Formulation of Beams
	3. Chapter 5: One Dimensional Elements
	4. Chapter 7: Two-Dimensional Elements
	5. Chapter 15. Three-Dimensional Elements
	For Laboratory Classes (Selected illustrative examples will be done in each chapter)
	From Finite Element Simulation with ANSYS Workbench 24: Theory, Application, Case
	Studies Book
	1. Chapter 1: Introduction
	a. Case Study: Pneumatically Actuated PDMS Fingers
	b. Structural Mechanics: A Quick Review
	c. Finite Element Methods: A Concise Introduction
	2. Chapter 2: Sketching
	3. Chapter 3: 2D Simulations
	4. Chapter 4: 3D Solid Modeling
	5. Chapter 5: 3D Simulations
	6. Chapter 6: Surface Models
	7. Chapter 7: Line Models
	o. Chapter 8: Optimization 9 Chapter 9: Meshing
	10. Chapter 10: Buckling and Stress Stiffening
	11. Chapter 11: Modal Analysis
	12. Chapter 12: Transient Structural Simulations

Policies	
University	https://www.uttyler.edu/offices/academic-affairs/files/syllabus-information.pdf
	v. Question and Answer
	iv. Conclusion
	iii. Discussion
	ii. FEA Challenges
	i. Problem
	f. Presentation (15 plus 5 minutes)
	v. Conclusion
	iv. Results and Discussion
	iii FEA features
	i Modeling
	i Problem Definition
	u. Interences and conclusion
	c. Finite Element Analysis
	b. Theoretical Modeling
	a. Project Assignment
	16. Group projects (Last Five Weeks)
	15. Chapter 15: Explicit Dynamics
	14. Chapter 14: Nonlinear Materials
	13. Chapter 13: Nonlinear Simulations