

<u>MENG 3316 – Heat Transfer</u> <u>Course Syllabus</u>

Semester / Year	Spring 2025
Catalog Description	Fundamentals and applications of conduction, convection, and radiation
	heat transfer. Analysis of steady-state and transient conduction employing
	analytical methods and numerical techniques. The simple theory of
	laminar and turbulent, free and forced convection, and the use of practical
	correlations. Basic thermal radiation concepts and applications. Three
	hours of lecture per week.
Prerequisites	MENG 3401 and MENG/CENG 3310.
Section Number	001
Instructor Name	Hamed Hosseinzadeh
Contact Information	Email: Hamed@uttyler.edu
Class Type / Instruction	Face to face / Lecture / Ratliff Building North 03038
Mode / Location	-
Class Time	Tuesday and Thursday, 3:30 pm - 4:50 pm
Office Hours	Tuesday and Thursday: 12:00 pm - 1:30 pm or by appointment
No. of Credits	3 credits
Required Textbook	Fundamentals of Heat and Mass Transfer, 8th edition, by Bergman,
	Lavine, Incropera, DeWitt, Wiley, 2018 (ISBN 978-1-119-35388-1)
Optional References	1. Schaum's Outline of Heat Transfer, 2nd Edition (SCHAUMS'
	ENGINEERING) Paperback by Donald Pitts, Leighton E. Sissom, 2011
	2. Heat Transfer, 1st edition, by Nellis and Klein, Cambridge University
	Press, 2009 (ISBN 978-1-107-67137-9)
Additional Rules and	Students may discuss their homework solutions with one another, but
Requirements	each student must submit their own, independent solution (i.e., you may
	not just copy someone else's homework). Students are permitted to use AI
	tools like ChatGPT, Copilot, and similar programs for specific
	assignments as designated by the instructor in this course.
Evaluation Method	Mid-term Exam(s) 35%
	Final Exam 45%
	Homework 20%
Grading Policy / Scale	Letter grades, scale:
	A: 90 – 100; B: 80 – 89; C: 70 – 79; D: 60 – 69; F: < 60
Important Events / Dates	https://www.uttyler.edu/schedule/files/2024-2025/academic-calendar-
	<u>2024-2025-main-20240222.pdf</u>
Attendance / Makeup	Regular attendance is required. In case you have to miss a class, it is your
policy / other rules	responsibility to keep up with the class work and be informed of all
	announcements made in the class.
	Homework Assignments: Homework will be assigned according to the
	topics covered in lectures. Assignments are considered very important for
	the understanding of the course material. Completing your homework
	independently is an absolute necessity to do well in this course.

	Canvas: The course syllabus, course material such as handouts and
	example problems with solutions, homework, assignments, homework
	solutions, review material, and exam solutions will all be posted on
	Canvas. Please review all the material posted on Canvas on a regular
	basis.
Course Learning	By the end of this course, students will be able to:
8	
Objectives / ABET & PEOs Relation	1. apply the conservation of energy to basic heat transfer analysis.
PLOS Relation	2. apply the heat conduction equation in one-dimensional and limited multi-dimensional situations.
	3. use a computer numerical solution for the numerical analysis of heat
	transfer.
	4. apply engineering analysis to unsteady heat conduction.
	5. apply convective heat transfer correlations to external and internal
	flows.
	6. apply radiative heat transfer analysis techniques to engineering
	situations
Tentative Topics /	Week 1: Cover the syllabus and introduce yourself to the class.
Course Plans	Week 2 Basic Concepts – Relationship with Thermodynamics.
	Week 3 Introduction to conduction.
	Week 4 One-dimensional conduction.
	Week 5 Two-dimensional, Steady-state Conduction.
	Week 6 Transient Conduction.
	Week 7 Review & Midterm Exam.
	Week 8 Introduction to Convection.
	Week 9 External flow convection.
	Week 10 Internal flow convection.
	Week 11 Review.
	Week 12 Free convection.
	Week 13 Heat Exchangers.
	Week 14 Radiation heat transfer.
	Week 15 Review
University Policies	https://www.uttyler.edu/offices/academic-affairs/files/syllabus-
	information.pdf