

<u>MENG 3401 – Thermodynamics</u> <u>Course Syllabus</u>

Semester /	Fall 2024
Year	
Catalog	First and accound laws of thermodynamics and its applications of work, heat, and energy.
Description	First and second laws of thermodynamics and its application to fixed mass systems and
D	control volumes. Analysis of thermodynamic cycles and their components.
Prerequisites	C or better grade in ENGR 2302 Dynamics, PHYS 2325 Physics 1, PHYS 2125 Physics
S 4 ¹	1 Lab
Section	030
Instructor	Havder Abdul Pozzek DbD DE
Contact info	habduleastal Quttular adu
Class Type /	Face to Face, HEC 0C204
Location Class Times	
Class Times	Mon/wed 11:15AM to 1:05PM
Office Hours	Mon: 1:30PM to 2:00PM, wed 1:30PM to 4:00PM or by appointment
Credits	
Textbooks	1. Fundamentals of Engineering Thermodynamics, 8th ed., by Moran, Shapiro, et
and	al., John Wiley and Sons, zyBook ISBN: 979-8-203-18310-1
Reference	2. Instruction to subscribe to Thermodynamics zyBook will be provided in Canvas
Materials	
Optional	N/A
References	
Additional	Students can use AI programs (ChatGPT, Copilot, etc.) in this course. If you utilize an
requirements	Al tool to help create content for an assignment, you must acknowledge and cite the
	tool's contribution to your work.
Instruction /	Quizzes, 10 points
Evaluation	3 Exams, 90 points
Method/	
Homework	Practice questions shall be assigned but not graded.
Grading	Grading in this course will be based on the following:
Policy / Scale	Scale: $A = > 90, B = > 80, C = > 70, D = > 60, F < 60.$
	Grade appeal: grades can be appealed by meeting the instructor during office hours, but
.	no later than a week after the grade has been given.
Important	See UT Tyler Academic Calendar: <u>https://www.uttyler.edu/schedule/files/2024-</u>
events/dates	<u>2025/academic-calendar-2024-2025-main-20240222.pdf</u>
Attendance /	Attendance at every meeting is strongly encouraged but not mandatory. There will be no
Makeup	makeup for missed in-class work or quiz. An opportunity to make up a missed exam
policy	may be available to students with an excused absence. Be advised that makeup exams
	maybe more challenging. Excused absences include absences for University- sponsored
	events and for religious observances (see the University policy link above for the
	procedures to follow). Other makeups are granted only in extreme cases and at the

	discretion of the instructor. Excused absence due to illness will require evidence of
	treatment by medical personnel or at a medical facility.
Course	By the end of this course students will be able to:
Learning	1. Determine properties of substances (Applying appropriate physical models of
Objectives /	state for a substance).
ABET &	2. Calculate the work done by and heat taken in by a system undergoing a change
PEOs	of state (reversibly and irreversibly).
relation	3. Perform first and second law analysis of steady-state flow systems (heat
	exchangers, turbines, pumps, condensers, boilers, and throttle valves).
	4. Perform analysis of thermodynamic cycles (e.g. Carnot, Rankine and Brayton
	cycles).
	5. Perform psychrometric analysis for heating/cooling processes.
Course	• Equations of state and physical principles behind liquid/gas phase separation.
Outline	• Relationship between pressure/volume, temperature/volume, and
	pressure/temperature spaces.
	• Computation of mechanical work and relation to pressure/volume space.
	• Designation of global/macroscopic kinetic and potential energy and internal
	energy as a property of state.
	• First law and computation of heat transfer.
	• Measurement of heat transfer and conversion to an "equivalent" work.
	• First law analysis of steady state flow systems: turbines, pumps/compressors.
	throttles, boilers, nozzles, diffusers, single substance mixing chambers, and heat
	exchangers.
	• Irreversibility and definition of entropy.
	• Quantification of entropy.
	• Forms of the second law: entropy statement and logical equivalence with
	Clausius and Kelvin-Planck statements.
	• Definition of cycle efficiency and comparison with theoretical limit (Carnot).
	• Second law analysis of steady state flow systems: turbines_pumps/compressors
	throttles boilers nozzles diffusers single substance mixing chambers and heat
	exchangers
	• Isentronic efficiency of turbines and pumps/compressors
	 Efficiency of Ranking and Brayton cycles
	 Vanor phase cycle/Refrigeration cycle and Heat Pump Systems
	Deventrometry
University	F Sychionicu y https://www.uttylor.odu/offices/condemic_offices/files/cullebus_information.pdf
Policies	https://www.uttyter.cuu/orrices/acauenne-arrans/mes/synabus-mitormation.put
1 Uncles	