

MENG 3210– Experimental Measurements and Techniques Course Syllabus

Semester /	Fall 2024					
Year						
Catalog	This is an experiential learning course based on Laboratory experiments. It					
Description	exposes the students to concepts of accuracy, uncertainty, and usefulness of					
1	measurements, Sensors for measuring physical phenomena such as: strain,					
	force, displacement, acceleration, pressure, and temperature will be introduced.					
	Data acquisition and signal processing techniques will also be applied to actual					
	measurements. Student teams will design, analyze, and document an					
1	experimental procedure. All procedures will result in a professional quality					
	laboratory report.					
	C or better in ENGR 2302 Dynamics, PHYS 2326 University Physics II and					
	PHYS 2126 University Physics II Laboratory					
	Lecture: 030					
	Lab: 031L, 032L, 033L and 034L					
	Dr. Soren Maloney					
name(s)						
	Office: HEC A206 or via Zoom (details posted on Canvas)					
	E-mail: smaloney@uttyler.edu					
1	Lecture: Houston Engineering Ctr C204, Face to face					
	Lab: Houston Engineering Ctr B223					
	Lecture – 030: M 10:10 to 11:05 am					
	Lab - 031L: M 2:00 to 4:45 pm					
	Lab - 032L: TBD					
	Lab - 033L: W 2:00 to 4:45 pm					
	Lab - 034L: W 2:00 to 4:45 pm Mondays 9:00 am to 10:00 am and 12:00 pm to 2:00 pm or by appointment					
	2 (1 hour lecture and 3 hours laboratory per week)					
_	Introduction to Engineering Experimentation, Third Edition, Anthony I. Whooler and Ahmed R. Ganii, but alder editions are accentable.					
	Anthony J. Wheeler and Ahmed R. Ganji., but older editions are acceptable Recommended textbook (available <i>via</i> library using patriots account) –					
*	Morris, Alan S., and Reza Langari. Measurement and Instrumentation: Theory					
	and Application, Elsevier Science & Technology, 2015. ProQuest Ebook					
	Central,					
	https://ebookcentral.proquest.com/lib/uttyler/detail.action?docID=5754522.					
	Additional Material on Canvas: Websites, Class Handouts, Tutorials on					
	MATLAB and Simulink by Mathworks, Inc.					
	Students can use AI programs (ChatGPT, Copilot, etc.) in this course. If you					
	utilize an AI tool to help create content for an assignment, you must					
*	acknowledge and cite the tool's contribution to your work.					

	LabVIEW by National Instruments, and MATLAB, Simulink & Simscape by							
	MathWorks, Inc. (available through virtual desktop – one.uttyler.edu)							
Evaluation	Grading:							
Method	Exam 1	5%						
	Final Exam	15%						
	Assignments	30%						
	Laboratory Reports & Participation	50%						
Grading	Letter grades							
Policy / Scale	Scale: A 90 – 100							
	B $80 - 89$							
	C 70 – 79							
	D 60 – 69							
	F < 60							
	Grade appeal: grades can be appealed by	meeting the instructor during office						
	hours, but no later than a week after the g	rade has been given.						
	Note: your final semester grade is based on the 10-point scale. No curving or							
	scaling will be applied even if you receive	e borderline grade such as 79.99.						
Important	Census date: Sept 9							
events / dates	Exam 1: October 28							
	Final Exam: Dec 9							
Attendance /	Attendance and participation to lectures are expected per university's class							
Makeup	attendance policy. There will be no makeup for missed in-class work. An							
policy/Late	opportunity to make up a missed exam or	lab may be available to students with						
Submission	an excused absence. Be advised that make	eup exams may be more challenging.						
	Excused absences include absences for un	niversity sponsored events and for						
	religious observances (see the University	policy). Other makeups are granted						
	only in extreme cases and at the discretion	n of the instructor. Excused absence						
	due to illness will require evidence of trea	atment by medical personnel or at a						
	medical facility. Make-up assignments or	exams if approved will be						
	administered during finals week.							
	Any violation of the Student Behavior (se	ee Canvas) will result in 1% or more						
	grade reduction for each incident. Studen	its may appeal the grade reduction to						
	the instructor if valid excuse or reason car	n be given.						
	Late submissions of assignments including							
	11:59:00 pm, then any time after such as 11:59:30 pm is late) will re							
	deduction per day (or 24 hours) from the	_						
	must be submitted on Canvas by last class	· · · · · · · · · · · · · · · · · · ·						
	midnight). After that time, all late assignn	nents will result in automatic grade of						
	zero.							

Course Learning Objectives / ABET & PEOs relation	 Select and use sensors and instrumentation to report engineering measurements and to perform calculations using the corresponding governing equations. Interpret and analyze data, obtained from Engineering Experimentation, using statistical methods and uncertainty analysis. Design, perform, and report results of a mechanical engineering experiment. Use software for data acquisition. 					
Topics	 Write professional quality laboratory reports. Basic Measurements and Uncertainty Statistical Analysis Signal Conditioning Temperature Displacement Strain Flow 					
Other	Cours	e Sch	edule			
	Week of		Lecture Activity	Lab Activity		
	Aug	26	Course Introduction/ Syllabus/ Significant Digits	Lab A - MATLAB tutorial completion credit		
	Sep	2	No Lecture – Labor Day Monday	Lab B - Lab Safety		
		9	Measurement Systems	Lab C – Report Writing		
		16	Statistical Analysis	Lab D - LabVIEW Simulink/Simscape tutorial completion credit		
		23	Uncertainty Analysis	Lab E - LabVIEW		
		30	Instrument Types	Lab F - LabVIEW		
	Oct	7	Data analysis/	Lab 1- How to use a Digital Multimeter		
		14	Dynamic Behavior of Measurement Systems	Lab 2 - Uncertainty in Measurements		

		21	Review for Exam	Lab 3 - Data Analysis
		28	Exam 1	Exam 1 feedback
		31	Signal Conditioning	Lab 4 - Signal Conditioning
	Nov	4	Measuring temperature	Lab 5 - Temperature Measurements
		11	Measuring Displacement	Lab 6 - Displacement Measurements
		18	Thanksgiving Week - No Classes	
		25	Measuring Flow	Lab 7 – Flow Measurement
	Dec	2	Review for Exam	Lab 8 – Solar Array Data Acquisition
		9	Finals week (No classes)	Exam 2 – Final Exam & Makeup exams
University Policies	https://wv	ww.uti	tyler.edu/offices/academic-affairs	/files/syllabus-information.pdf