

MENG 5399 - Independent Study Course Syllabus

Semester / Year	Spring / 2024
Catalog Description	Independent study in specific areas of Mechanical Engineering not
	covered by organized graduate courses. A maximum of six credit hours
	may be used for graduate credit on the MSME degree. One to three hours
	of course meeting per week.
Prerequisites	CI.
Section Number	002
Instructor Name	Chung Hyun Goh
Contact Information	3900 University Blvd., RBN 3007, Tyler TX. 75799
	Phone: 903-566-6256
	Email: <u>chgoh@uttyler.edu</u>
Class Type / Instruction	Independent / In person / Tyler
Mode / Location	
Class Time	Weekly meeting with a faculty advisor (one to three hours on Thursday)
Office Hours	M/Tu/W: 10:00 AM – 11:00 AM or by appointment
No. of Credits	3 credits
Required Textbook	Design of Embedded Robust Control Systems Using MATLAB/Simulink
	(Control, Robotics and Sensors), Petko H. Petkov, Tsonyo N. Slavov and
	Jordan K. Kralev, 2018, The Institution of Engineering and Technology.
Optional References	MATLAB Deep Learning with Machine Learning, Neural Networks and
	Artificial Intelligence, Phil Kim, 2017, Apress.
Additional Rules and	N/A
Requirements Evaluation Method	Assignments (literature review MATLAD and grouping, etc.): 400/
Evaluation Method	Assignments (literature review, MATLAB programming, etc.): 40%
	Written Reports (progress and final technical reports): 50% Independent study meeting participation: 10%
Grading Policy / Scale	Letter grades, scale:
Grading Foncy / Scale	A: 90 – 100; B: 80 – 89; C: 70 – 79; D: 60 – 69; F: < 60
Important Events / Dates	Census date: 01/29/2024.
Important Events / Dates	First drop for non-payment: 01/24/2024.
	Last date to withdraw from one or more 15-week courses: 03/25/2024.
	Final report submission date: 04/25/2024.
Attendance / Makeup	No makeup, regular attendance is required.
policy / other rules	
Course Learning	By the end of this course, students will be able to:
Objectives / ABET &	1. Demonstrate an understanding of basic knowledge for machine
PEOs Relation	learning applications through independent research.
	2. Utilize hands-on skills using machine learning tools to perform
	optimal design in embedded robust control systems.
	3. Develop self-motivation and discipline to identify a problem,
	analyze data, and explore the solution space.
	4. Communicate effectively with an engineering audience.

	For the topic assigned, by the end of this course the student should
	be able to:
	1. Apply machine learning techniques to provide robot-assisted
	rehabilitation device (RoboREHAB) with optimal gait motion
	in daily activities such as walking, running, sit-to-stand, stand-
	to-sit, and step-up/down etc.
	2. Utilize machine learning tools for predicting the motion and
	loading characteristics of gait through predictive gait
	simulation, specifically for the asymmetric gait.
	3. Enhance optimal design and prototyping capabilities through
	machine learning in embedded robotics.
	4. Improve writing skills to make a publishable draft paper.
Tentative Topics /	1. Asymmetric gait rehabilitation for individuals with strokes.
Course Plans	2. Design of embedded robust control systems using
	MATLAB/Simulink.
	3. Case study: deep learning and reinforcement learning applications in
	the asymmetric gait simulations using RoboREHAB.
	4. Machine learning in embedded robotics.
University Policies	https://www.uttyler.edu/academic-
	affairs/files/syllabus information 2021.pdf