

<u>MENG 5343 – Advanced Heat Transfer</u> <u>Course Syllabus</u>

Semester / Year	Spring 2024			
Catalog Description	Multidimensional steady and transient heat conduction; forced and			
	natural convection; radiation exchange			
Prerequisites	MENG 3316 (Heat Transfer)			
Section Number	030 and 041			
Instructor Name	Hayder Abdul-Razzak			
Contact Information	832.439.7080; habdulrazzak@uttyler.edu			
Class Type / Instruction	Face-to-face / HEC C203 (Section 030), Hybrid / TYL TBA (Section			
Mode / Location	041)			
Class Time	W: 5:00 p.m. – 7:45 p.m.			
Office Hours	TuTh: 2:30 p.m. – 3:30 p.m., W: 4:00 p.m. – 5:00 p.m. or by appointment			
No. of Credits	3			
Required Textbook	Heat Transfer 1 St adjustion by Nallis and Klein Cambridge University			
_	Press 2000 (ISBN 978-1-107-67137-0)			
Ontional References	FE Supplied Reference Handbook NCEES (National Council of			
Optional References	Examiners for Engineering and Surveying)			
Additional Rules and	N/A			
Requirements				
Evaluation Method	Exercises 20%/ Paper (Project) 20%/ 2 Exams 40%/ Final Exam 20%			
Grading Policy / Scale	A = >90 $B = >80$ $C = >70$ $D = >60$ $F < 60$			
Important Events / Dates	Census date: Monday January 29			
	Last Day to Withdraw date: Monday March 25			
	Final Exam date: Wednesday, May 1			
Attendance / Makeup	ATTENDANCE. Regular attendance is required. In case you have to			
policy / other rules	miss a class, it is your responsibility to keep up with the class work and			
	be informed of all announcements made in the class.			
	THERE WILL BE NO MAKE-UP EXAMS. The percentage of any			
	exam missed by a student will be added to his/her final comprehensive			
	exam only if prior approval is granted. The student is responsible to			
	contact the instructor at least a week before the scheduled exam date to			
	get an excuse from the exam. If you have to miss an exam due to			
	emergencies (such as medical and other emergencies) please inform the			
	instructor as soon as possible before or immediately after the exam.			
	Class average for each exam will be announced in class and also posted			
	in Canvas after each exam. Final course grades will be determined on the			
	basis of the class average. If you miss any exam without getting prior			
	approval from the instructor at least a week before the exam date, it			
	will be counted as zero in the calculation of your final course grade. If			
	you intend to be absent for a university-sponsored event or activity, you			

	(or the event sponsor) must notify the instructor at least a week prior to			
	the date of the planned absence.			
Course Learning	By the end of this course, students will be able to:			
Objectives / ABET &	1. Derive analytical solutions to heat transfer problems			
PEOs Relation	2. Use analytical solutions to determine temperature			
	distribution			
	3. Analyze systems using the principles of conduction, convection, and radiation			
	4. Analyze multimode heat transfer problems to determine heat transfer rates as well as temperature distribution			
	5. Apply numerical methods to solve heat transfer problems			
	6. Enhance literature research and oral presentation skills transfer			
Tentative Topics /	/ Steady and unsteady conduction in one or more dimensions; forced and			
Course Plans	natural convection; thermal radiation, black bodies, grey radiation			
	networks, spectral and solar radiation; numerical simulation of			
	conduction, convection, and radiation. Problems and examples			
	emphasize modeling of complex systems drawn from current heat			
	transfer applications. See "Tentative Course Outline" table below.			
University Policies	https://www.uttyler.edu/academic-			
	affairs/files/syllabus_information_2021.pdf			

Department of Mechanical Engineering Phone: +1.903.566.7003 Fax: +1.903.566.7148 Uttyler.edu/engineering

Tentative Course Outline

W	Date	TOPIC	Readings
1	17-Jan	Introduction, conduction heat transfer	
		1-D conduction with generation	
		Resistance concepts, circuits and approximations	1.1, 1.2, 1.3, 2.8
2	24-Jan	1-D conduction, numerical solution	
		Extended surfaces, fin efficiency and resistance	
		Extended surfaces-fin behavior	1.4, 1.5, 1.6, 1.7
3	31-Jan	Bessel functions	
		Introduction to separation of variables	1.0.00.04
- 4	7 5 1	Separation of variables and superposition	1.8, 2.2, 2.4
4	/-Feb	Lumped capacitance problems-analytical solutions and	
		the lumped time capacitance time constant	21.22
5	14 Eab	Numerical solutions to lumped capacitance problems	5.1, 5.2
5	14-60	I anlace transforms for 1 D transient problems	
		Separation of variables for transient problems	
		Numerical solutions to 1-D transient problems	33343538
6	21-Feb	Fxam #1	5.5, 5.4, 5.5, 5.6
0	21100		
7	28-Feb	Boundary layer concepts	
		Boundary layer equations	
		Dimensional analysis and correlation	4.1, 4.2, 4.3
8	6-Mar	Turbulent concepts	
		Reynolds average equations, inner Coordinates	
		Integral method- momentum and energy equations	4.5, 4.6, 4.7, 4.8
9	11-Mar	SPRING BREAK	
	to		
10	15-Mar	T , 101 .	
10	20-Mar	Internal flow concepts	
		Internal flow correlations	
		Natural Convection	51 52 53 101
11	27_Mar	Fxam #2	5.1, 5.2, 5.5, 10.1
11	27-1 vi ai		
12	3-Apr	Introduction to radiation, blackbodies	
		Blackbody radiation exchange	10.1, 10.2, 10.3
13	10-Apr	Real surfaces	
		Diffuse gray surface radiation exchange	10.4, 10.5
14	17-Apr	Introduction to heat exchangers	
		The LMTD Method	
1.5	24.4	Effectiveness-NTU method	8.1, 8.2, 8.3
15	24-Apr	Paper Review/Project	
16	1-May	Final Exam	
1	1		