

<u>MENG 5314 – Micro Electro Mechanical Systems (MEMS)</u> <u>Course Syllabus</u>

Semester / Year	Spring / 2024
Catalog Description	This course introduces the students to principles, modeling, interfacing,
	and signal conditioning of micro-electro-mechanical systems (MEMS)
	such as motion sensors and actuators. It also covers basic electronic
	devices, MEMS resonators, embedded microprocessor systems and
	control, power transfer components, and mechanism design. The course
	provides knowledge in the analysis and design of hardware-in-the-loop
	through simulation and rapid prototyping of real-time closed-loop
	computer control of electromechanical systems.
Prerequisites	ENGR 2302 Dynamics, MATH 3305, or Graduate student standing.
Section Number	001
Instructor Name	Dr. A. Ibrahim
Contact Information	Email: <u>aibrahim@uttyler.edu</u>
	Office: RBN 3008
Class Type / Instruction	Mode: F2F
Mode / Location	Tyler: Ratliff Building North 03040
Class Time	Мо 5:00 РМ –7:45 РМ
Office Hours	<i>Mo</i> 1:00 <i>PM</i> – 4:00 <i>PM</i> or by appointment
No. of Credits	3
Required Textbook	MEMS Linear and Nonlinear Statics and Dynamics, Younis, Mohammad
	I., Springer, New York, 2011.
Optional References	NA
Additional Rules and	MATLAB Programming skills.
Requirements	
Evaluation Method	Assignments 25%
	Midterm Exam 25%
	Project 25%
	Final Exam 25%
Grading Policy / Scale	Letter grades, scale:
	A: $90 - 100$; B: $80 - 89$; C: $70 - 79$; D: $60 - 69$; F: < 60
	Note: 89.4 == B
Important Events / Dates	<i>Census date:</i> January 29 th , 2024,
	Last date to withdraw courses: March 23 ^{ra,} 2023,
	Midterm Exam: After Ch4, Week 7 or 8, 2024,
	Project article and Presentation: Mo April 22 ^{na} , 2024,
	Final Exam: As scheduled by UT Tyler.
	No class: Mo Jan. 15, 2024: Martin Luther King, Jr. Holiday
	No class: March 11-15, 2024, Spring Break
Attendance / Makeup	Attendance is required / No makeup.
policy / other rules	$Missing \ 3 \ classes \equiv F \ grade$
Course Learning	By the end of this course, students will be able to:
Objectives / ABET &	1. Describe MEMS and their related design components.

PEOs Relation	2. Analyze nonlinear dynamic responses of MEMS devices.
	3. Design MEMS resonators and analyze their static and dynamic
	behaviors.
	4. Apply analytical and numerical techniques to model and simulate
	MEMS, considering nonlinear multi-physics interaction and actuation
	forces.
	5. Conduct a major project leading to a draft of a publishable level
	paper.
Tentative Topics /	1. Introduction to MEMS and their modeling challenges laws of motion.
Course Plans	2. Sensing and Actuation in MEMS.
	3. Elements of Lumped-Parameter Modeling in MEMS.
	4. Introduction to Energy Harvesting.
	5. Introduction to Nonlinear Dynamics.
	6. Continuous Systems: Microbeams.
University Policies	https://www.uttyler.edu/academic-
	affairs/files/syllabus_information_2021.pdf