

MENG 5308 – Robotic Vision and Control Course Syllabus

a , , , a	
	Spring 2024
Year	
0	This course focuses on the application of machine vision learning in application to
	robotics, such as the vision-guided control in arm-type robots. A software package will
	be selected for use a learning support tool. The course includes a design project and
	computer programming as a major component.
	Graduate Status.
	001
Number	
	Dr. Chung Hyun Goh
Name	
	Email: <u>cgoh@uttyler.edu</u>
Information P	Phone: 903-566-6125
	Office: RBN 3007
• 1	001: Face-to-face / Lecture / RBN 3039,
Instruction	
Mode /	
Location	
Class Time T	Гh 5:00 PM – 7:45 PM
Office Hours N	M/Tu/W 10:00 AM – 11:00 AM or by appointment
No. of Credits 3	3 credits (Lecture)
Required R	Robotics, Vision and Control: Fundamental Algorithm in MATLAB – Peter Corke. 2 nd
Textbook E	Ed., 2016, Springer
Optional C	Computer & Machine Vision: Theory, Algorithms, and Practicalities – E. R. Davies, 4 th
References E	Ed., 2012, AP (Academic Press)
Additional P	Programming skills with MATLAB / Simulink or Python (or other computer languages)
Rules and	
Requirements	
Evaluation A	AI Ethics Debate 10%
Method F	Final Project Report / Presentations 30%
Ν	Mid-term Exam 20%
F	Homework 15%, Quizzes 15%
C	Course Participation 10% (In-Class Examples, Assign submissions, etc.)
Grading L	Letter grades, scale:
	A: $90 - 100$; B: $80 - 89$; C: $70 - 79$; D: $60 - 69$; F: < 60
	Census date: 01/29/2024
-	First drop for non-payment: 01/24/2024
Dates E	Exam date: Mid-term (March 7, 2024)
	Last date to withdraw from one or more 15-week courses: 03/25/2024
	Final project presentation date: 04/25/2024
	Regular attendance is imperative if you want to do well in this course. Therefore, regular
	attendance is highly recommended. In case you have to miss a class, it is your

policy / other	responsibility to keep up with the class work and be informed of all announcements
rules	made in the class on HomeWorks, tests etc. No makeup exams will be authorized
	without providing an official document showing that your absence is in line with
	university rules.
Course	By the end of this course, students will be able to:
Learning	1. Demonstrate an understanding of basic knowledge for position and orientation
Objectives /	representation and navigation process in robotics.
ABET &	2. Apply machine vision and robot learning techniques to analyze forward and inverse
PEOs	kinematics in arm-type robots.
Relation	3. Utilize computer programming using MATLAB to perform vision-guided motion control in robotics.
	4. Demonstrate the ability to be an effective team member on a group project to apply robot vision concepts for real-world problems.
	5. Conduct a major project leading to a draft of a publishable level paper.
Tentative	1. Representation of position and orientation in robotics
Topics /	2. Navigation and localization in robotics
Course Plans	3. Robot arm kinematics
	4. Image formation, processing, and feature extraction in machine vision
	5. Embedded robotics
	6. AI ethics and AI in robotics
University	https://www.uttyler.edu/academic-affairs/files/syllabus_information_2021.pdf
Policies	