

Department of Mechanical Engineering

Phone: +1.903.566.7003 Fax: +1.903.566.7148 Uttyler.edu/engineering

MENG 5308 – Robotic Vision and Control Course Syllabus

Semester / Year	Spring 2023
Catalog Description	This course focuses on the application of machine vision learning in
	application to robotics, such as the vision-guided control in arm-type
	robots. A software package will be selected for use a learning support
	tool. The course includes a design project and computer programming as
	a major component.
Prerequisites	Graduate Status.
Section Number	001
Instructor Name	Chung Hyun Goh
Contact Information	Email: cgoh@uttyler.edu
	Voice: 903-566-6125
	Office: RBN 3007
Class Type / Instruction	Face-to-face / RBN 3039
Mode / Location	
Class Time	M/W: 12:30 PM – 1:55 PM
Office Hours	Tu/W/Th: 11:00 AM – 12:00 PM or by appointment
No. of Credits	3 credits
Required Textbook	Robotics, Vision and Control: Fundamental Algorithm in MATLAB –
_	Peter Corke. 2 nd Ed., 2016, Springer
Optional References	Computer & Machine Vision: Theory, Algorithms, and Practicalities – E.
	R. Davies, 4th Ed., 2012, AP (Academic Press)
Additional Rules and	Programming skills with MATLAB / Simulink or Python (or other
Requirements	computer languages)
Evaluation Method	Computer Vision Competition: Synthesis AI 10%
	Final Project Report / Presentations 30%
	Mid-term Exam 20%
	Homework 15%, Quizzes 15%
	Course Participation 10% (In-Class Examples, Assign submissions, etc.)
Grading Policy / Scale	Letter grades /
	A=>90, B=>80, C=>70, D=>60, F<60
Important Events / Dates	Census date: January 23, 2023
	Exam date: TBD
	Final date: Per published schedule by the registrar – TBD
Attendance / Makeup	Regular attendance is imperative if you want to do well in this course.
policy / other rules	Therefore, <u>regular attendance is required</u> . In case you have to miss a
	class, it is your responsibility to keep up with the class work and be
	informed of all announcements made in the class on homework's, tests
	etc. No makeup.
Course Learning	By the end of this course, students will be able to:
Objectives / ABET &	1. Demonstrate an understanding of basic knowledge for position and
PEOs Relation	orientation representation and navigation process in robotics. (SO 1)

Department of Mechanical Engineering Phone: +1.903.566.7003

Phone: +1.903.566.7003 Fax: +1.903.566.7148 Uttyler.edu/engineering

	2. Apply machine vision and robot learning techniques to analyze
	forward and inverse kinematics in arm-type robots. (SO 1)
	3. Utilize computer programming using MATLAB to perform vision-
	guided motion control in robotics. (SO 1)
	4. Demonstrate the ability to be an effective team member on a group
	project to apply robot vision concepts for real-world problems. (SO 3)
	5. Conduct a major project leading to a draft of a publishable level paper.
	(SO 3)
Tentative Topics /	1. Representation of position and orientation in robotics
Course Plans	2. Navigation and localization in robotics
	3. Robot arm kinematics
	4. Image formation, processing, and feature extraction in machine vision
	5. Vision-guided control in robots
	6. Robot learning combined with motion control in robotics
University Policies	https://www.uttyler.edu/academic-
	affairs/files/syllabus_information_2021.pdf