

<u>MENG 4326 – Finite Element Analysis</u> <u>Course Syllabus</u>

Semester / Year	Spring 2023
Catalog Description	A required introductory course providing undergraduate engineering
	students with fundamentals of finite element (FE) concepts, analysis, and
	applications in real-world problems. A software package will be selected
	for use a learning support tool, which also provides students with a
	marketable skill. The course includes a project as a major component.
Prerequisites	MENG 3401 – Thermodynamics, MENG 3309 Mechanical Systems
-	Design (can be a pre-requisite or co-requisite)
Section Number	001
Instructor Name	Chung Hyun Goh
Contact Information	Email: cgoh@uttyler.edyu
	Phone: 903-566-6125
	Office: RBN 3007
Class Type / Instruction	Face to Face / RBN 3038 (Tyler)
Mode / Location	
Class Time	Tu/Th 8:00 AM – 9:20 AM
Office Hours	Tu/W/Th: 11:00 AM – 12:00 PM or by appointment
No. of Credits	3 credits
Required Textbook	Finite Element Analysis: Theory and Application with ANSYS – Saeed
	Moaveni
Optional References	Finite Element Simulations with ANSYS Workbench 19: Theory,
	Applications, Case Studies – Huei-Huang Lee
Additional Rules and	N/A
Requirements	
Evaluation Method	Midterm Exam 20%
	Final Project/Presentation/Poster 30%
	Tutorial Flipped Classes 10%
	Homework 15%, Quizzes 15%
	Course Participation 10% (In-Class Examples, Assign submissions, etc.)
Grading Policy / Scale	Letter grades grades/
	A=>90, B=>80, C=>70, D=>60, F<60
Important Events / Dates	Census date: 01/23/2023
	Exam date: TBD
	Final date: Per published schedule by the registrar – TBD
Attendance / Makeup	Regular attendance is imperative if you want to do well in this course.
policy / other rules	Therefore, regular attendance is required. In case you have to miss a
	class, it is your responsibility to keep up with the class work and be
	informed of all announcements made in the class on homework's, tests
	etc. <u>No makeup</u> .
Course Learning	By the end of this course, students will be able to:
Objectives / ABET &	1. Demonstrate an understanding of the fundamental concepts and
PEOs Relation	general steps of the finite element analysis (FEA). (SO1)

	2. Apply science and math concepts using FEA tools to identify,
	formulate and solve engineering problems. (SO1)
	3. Apply FEA techniques to engineering design with broader
	considerations. (SO1)
	4. Select and integrate FEA for the appropriate part in the design process
	to support and justify design decisions with broader considerations.
	(SO3)
Tentative Topics /	1. Introduction to Finite Element Formulation approaches
Course Plans	2. Introduction to FE element types to design the desired physical model
	3. Analysis of 1-D, 2-D, and 3-D problems using ANSYS FE software
	FEA Applications in real-world problems: solid mechanics, fluid,
	thermal, and modal analysis
University Policies	https://www.uttyler.edu/academic-
	affairs/files/syllabus_information_2021.pdf