

Uttyler.edu/engineering

MENG 3306 Mechanics of Materials Course Syllabus

Semester / Year	Spring / 2023
Catalog Description	Stress and strain; uniaxially loaded members; centroids and area moments
	of inertia; normal and shear stresses; beam deflections; buckling of
	columns; pressure vessels; combined stresses; failure criteria. Three hours
	of lecture per week.
Prerequisites	Grade C or better in ENGR/MENG 2301 Mechanics - Statics
Section Number	001
Instructor Name	Professor Matthew Lucci
Contact Information	mlucci@uttyler.edu
Class Type / Instruction	Face-to-Face, RBN 3038
Mode / Location	
Class Time	11:00 AM - 12:20 PM Tuesdays and Thursdays
Office Hours	12:30 PM - 2 PM on Tuesdays and Thursdays, or by appointment.
	RBN 3004 in person or virtual.
No. of Credits	3
Required Textbook	Mechanics of Materials, 10th edition, by Russell C. Hibbeler
Optional References	
Additional Rules and	Attendance is highly encouraged.
Requirements	
Evaluation Method	Project: 40%
	Homework: 10%
	Quizzes: 10%
	Exam 1: 20%
	Exam 2: 20%
Grading Policy / Scale	Letter grades, scale:
	A: 90 – 100; B: 80 – 89; C: 70 – 79; D: 60 – 69; F: < 60
Important Events / Dates	Check the University academic calendar before entering the dates.
	Census date: January 23, 2023
	Exam date: TBD
	Last date to withdraw from one or more 15-week courses: March 23,
	Final date: TBD
Attendance / Makeup	There will be no make-up exams or quizzes. Students may receive up to
policy / other rules	three (3) excused absences by notifying the professor ahead of time for $\frac{1}{3}$
	medical/personal reasons.
Course Learning	By the end of this course, students will be able to:
DECTRONAL ABET &	1. Use various external loads to determine internal forces and related
reos kelation	suress and deformation for a variety of structures.
	2. Determine the state of stress at a point and calculate principal stresses
	and directions.

	3. Relate stress to strain using material properties and calculate
	deformations.
	4. Design and analyze beams and shafts based on strength and
	deformation requirements.
	5. Use Failure Theories to predict ductile or brittle material failure.
	6. Use elastic instability and column buckling analysis to design columns.
Tentative Topics / Course	1. Normal and shear stress
Plans	2. Normal and shear strain
	3. Mechanical properties of materials
	4. Axial load
	5. Torsion
	6. Bending
	7. Stress and strain transformation
	8. Beam and shaft design
	9. Deflections of beams and shafts
University Policies	https://www.uttyler.edu/academic-affairs/files/syllabus_information_2021
	pdf