

Mechanical Behavior of Recycled Concrete Aggregates (RCA) for Improved Sustainability of Reinforced Concrete Building Structures

Environmental Considerations of Recycled Concrete Aggregates (RCA) for Improved Sustainability of Reinforced Concrete Building Structures

Mark Davis

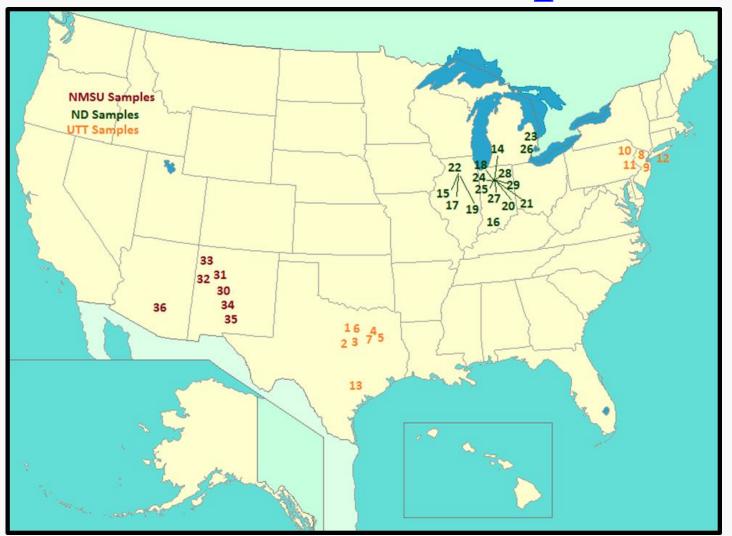
Andres de la Rosa University of Texas at Tyler

Dr. Michael McGinnis

Dr. Yahya C. Kurama University of Notre Dame

Dr. Brad Weldon New Mexico State University

College of Engineering


Outline

- RCA Sample Collection
- Sample & Target Gradations
- Natural Aggregate (NA) & Recycled Concrete Aggregate (RCA) Properties
- Mix Designs
- 28-Day Compressive Strength Results
- Relationship between Theoretical Values and Measured Values

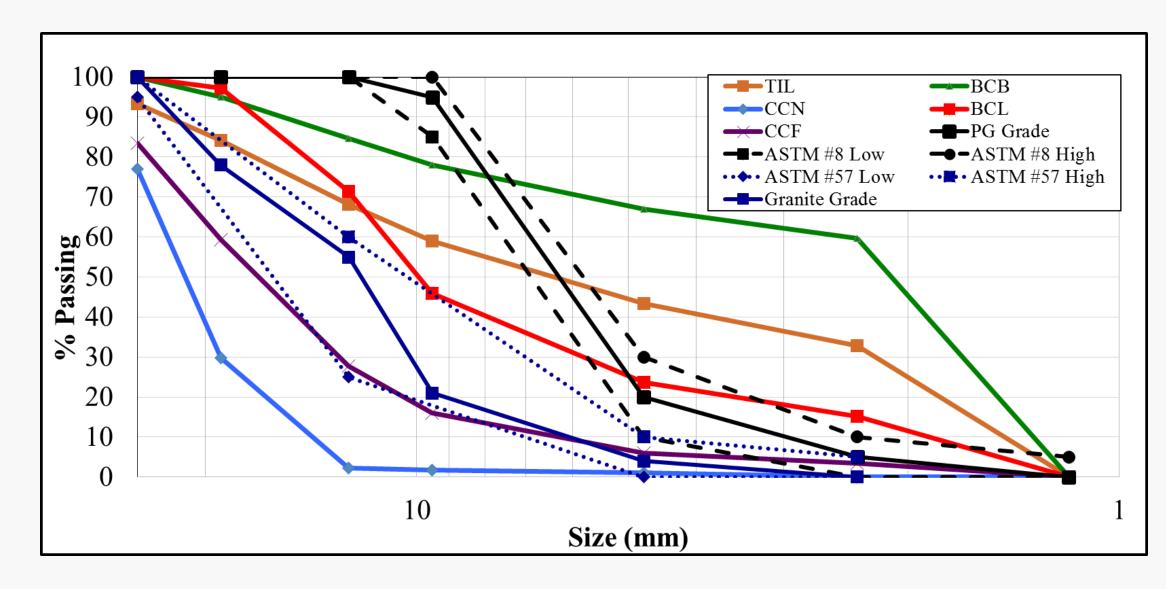
Collected Samples

BCL - 3" (TX)

BCB - Base (TX)

CCF - 1.5" Minus (PA)

CCN - 1.5" to 0.375" Minus (PA)



TIL - 1.5" Minus (NJ)

Gradations

Natural Aggregate (NA) and Recycled Concrete Aggregate (RCA) Properties

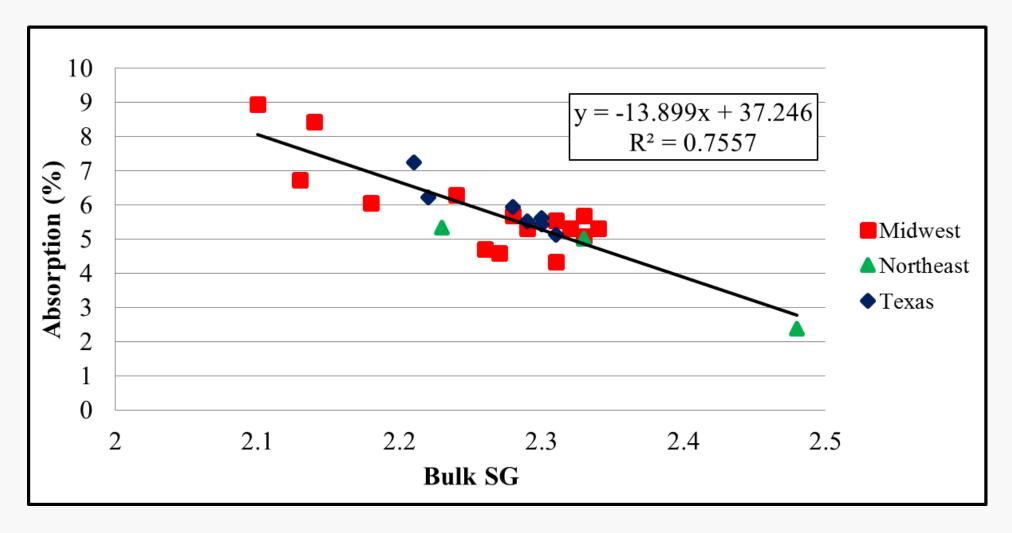
State of Origin	Sample	Type	Absorption	Bulk SG	Bulk SSD	Apparent SG	DRCA (%)
NJ	TIL	RCA	5.41	2.31	2.43	2.64	4.63
PA	CCF	RCA	5.01	2.33	2.45	2.64	5.95
PA	CCN	RCA	5.02	2.33	2.44	2.63	10.33
TX	ВСВ	RCA	5.95	2.28	2.42	2.64	2.29
TX	BCL	RCA	5.52	2.29	2.42	2.62	2.96
TX	PG	NA	1.83	2.55	2.60	2.68	N/A
TX	Sand	NA	1.00	2.62	2.65	2.69	N/A

NA and RCA Properties

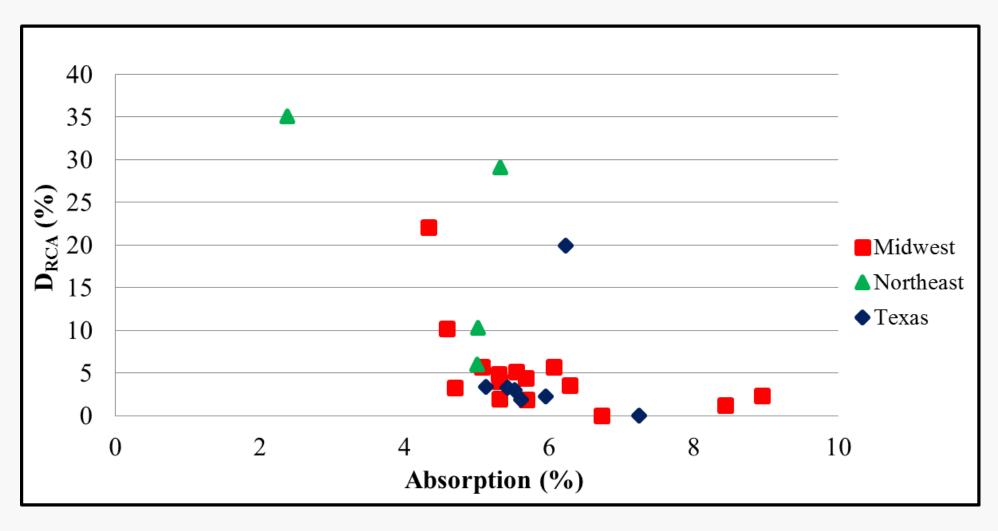
State of Origin	Sample	Type	Absorption	Bulk SG	Bulk SSD	Apparent SG	DRCA (%)
NJ	TIL	RCA	5.41	2.31	2.43	2.64	4.63
PA	CCF	RCA	5.01	2.33	2.45	2.64	5.95
PA	CCN	RCA	5.02	2.33	2.44	2.63	10.33
TX	ВСВ	RCA	5.95	2.28	2.42	2.64	2.29
TX	BCL	RCA	5.52	2.29	2.42	2.62	2.96
TX	PG	NA	1.83	2.55	2.60	2.68	N/A
TX	Sand	NA	1.00	2.62	2.65	2.69	N/A

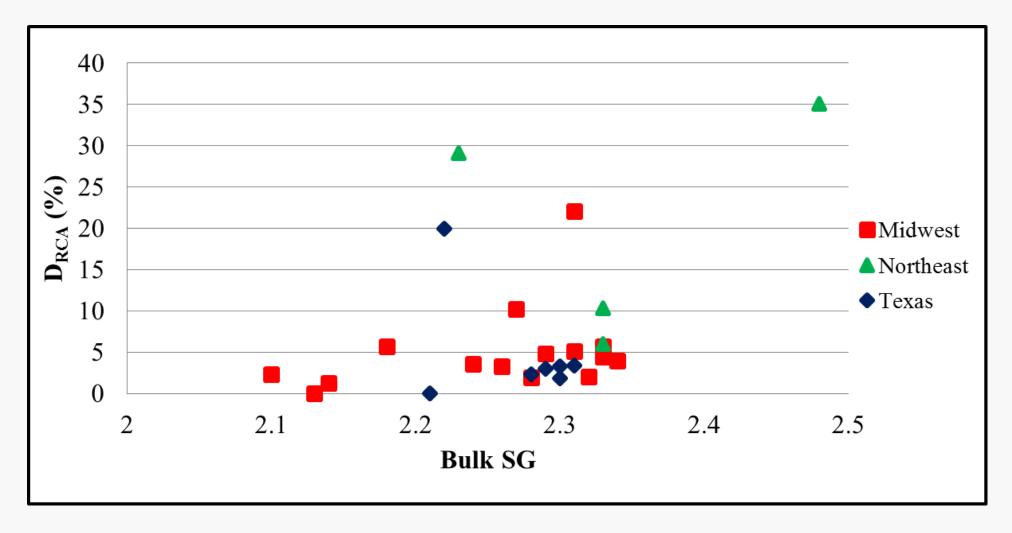
NA and RCA Properties

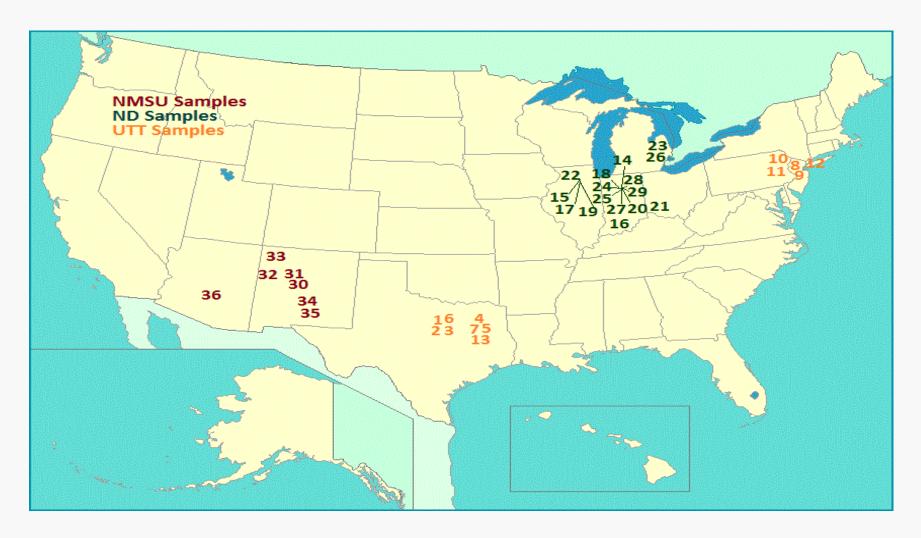
State of Origin	Sample	Type	Absorption	Bulk SG	Bulk SSD	Apparent SG	DRCA (%)
NJ	TIL	RCA	5.41	2.31	2.43	2.64	4.63
PA	CCF	RCA	5.01	2.33	2.45	2.64	5.95
PA	CCN	RCA	5.02	2.33	2.44	2.63	10.33
TX	ВСВ	RCA	5.95	2.28	2.42	2.64	2.29
TX	BCL	RCA	5.52	2.29	2.42	2.62	2.96
TX	PG	NA	1.83	2.55	2.60	2.68	N/A
TX	Sand	NA	1.00	2.62	2.65	2.69	N/A


NA and RCA Properties

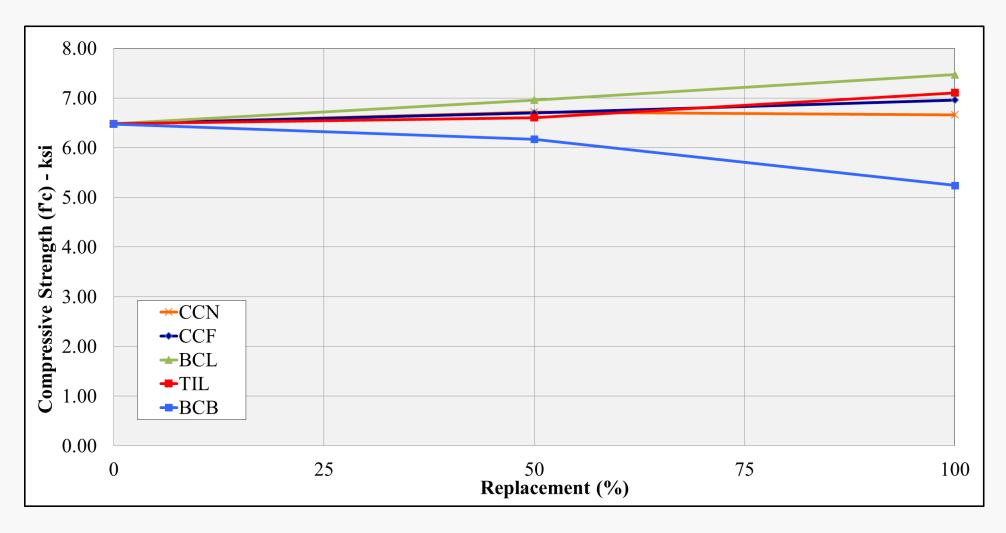
State of Origin	Sample	Туре	Absorption	Bulk SG	Bulk SSD	Apparent SC	DRCA (%)
NJ	TIL	RCA	5.41	2.31	2.43	2.64	4.63
PA	CCF	RCA	5.01	2.33	2.45	2.64	5.95
PA	CCN	RCA	5.02	2.33	2.44	2.63	10.33
TX	ВСВ	RCA	5.95	2.28	2.42	2.64	2.29
TX	BCL	RCA	5.52	2.29	2.42	2.62	2.96
TX	PG	NA	1.83	2.55	2.60	2.68	N/A
TX	Sand	NA	1.00	2.62	2.65	2.69	N/A


Absorption vs. Specific Gravity


Deleterious Material (DRCA) vs Absorption


DRCA vs Bulk Specific Gravity

Collected Samples


Mix Designs

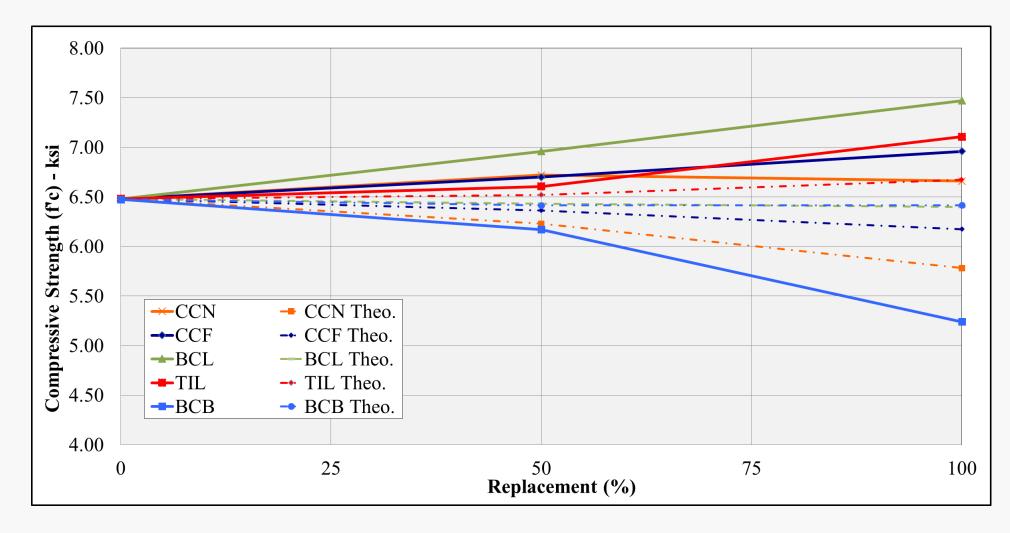
	PG Graded M1 Mixes						
Sample	Replacement (%)	PS 1466 (mL)	Cement (lbs)	CA Added (lbs)	FA Added (lbs)	Water Added (lbs)	Weight in Mixer (lbs)
PG	0	7.79	4.40	11.80	9.96	0.553	26.7
ВСВ	50	7.89	4.45	12.30	9.94	0.000	26.7
ВСВ	100	7.99	4.51	12.02	10.11	0.098	26.7
BCL	50	7.89	4.44	11.90	10.10	0.260	26.7
BCL	100	7.99	4.51	11.85	10.25	0.093	26.7
TIL	50	7.89	4.45	11.80	10.15	0.30	26.7
TIL	100	7.99	4.50	11.90	10.25	0.049	26.7
CCN	50	7.89	4.45	11.95	9.98	0.297	26.7
CCIV	100	7.99	4.50	12.07	10.04	0.106	26.7
CCF	50	7.89	4.44	11.86	10.05	0.357	26.7
CCI	100	7.99	4.49	11.85	10.20	0.159	26.7

28 Day Compressive Strength

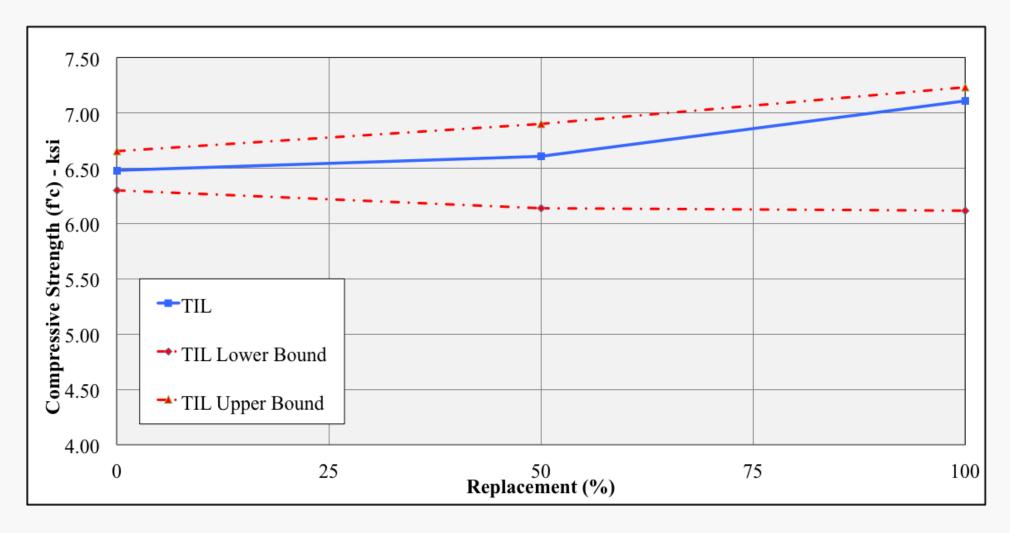
Prediction Equation

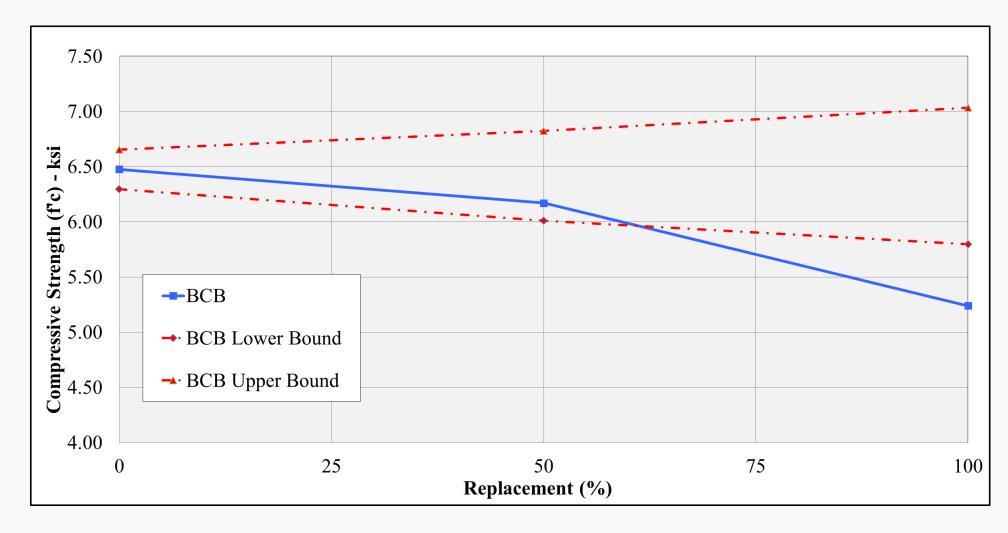
$$fc,RCA/fc,NA = \beta_{f1} + \beta_{f2} \times + \beta_{f3} \times D + \beta_{f4} \times R$$

	βf_1	1.0241		βf_1	[1.0026, 1.0456]
Mean Value of Unnormalized Regression	βf_2	-0.0241	95% Confidence Interval For Unnormalized	βf_2	[-0.0300 ,-0.0182]
Coefficients	βf_3	-0.0138	Regression Coefficients	βf_3	[-0.0172, -0.0104]
	βf_4	0.0769		βf_4	[0.0299,0.1239]


D = Combined deleterious material content of RCA

R = Replacement Percentage


Measured vs. Theoretical


Confidence Intervals

Confidence Intervals

Measured Values vs. Theoretical Values

Sample	Measured f'c at 50% R	Theoretical f'c at 50% R	Percent Difference (%)	Measured c' at 100% R	Theoritical f'c at 100% R	Percent Difference (%)
ВСВ	6.17	6.41	-3.89	5.24	6.42	20.19
BCL	6.96	6.43	7.87	7.47	6.40	15.45
CCF	6.70	6.36	5.16	6.96	6.17	11.95
CCN	6.72	6.23	7.57	6.66	5.78	14.11
TIL	6.61	6.52	1.29	7.11	6.67	6.29

Measured Values vs. Theoretical Values

Sample	Measured f'c at 50% R	Theoretical f'c at 50% R	Percent Difference (%)	Measured f'c at 100% R	Theoritical f'c at 100% R	Percent Difference (%)
ВСВ	6.17	6.41	-3.89	5.24	6.42	-20.19
BCL	6.96	6.43	7.87	7.47	6.40	15.45
CCF	6.70	6.36	5.16	6.96	6.17	11.95
CCN	6.72	6.23	7.57	6.66	5.78	14.11
TIL	6.61	6.52	1.29	7.11	6.67	6.29

RCA's Effect on Strength

Sample	Percent Difference from 0% to 50%	Percent Difference from 0% to 100%
ВСВ	-4.82	-21.2
BCL	3.71	2.82
CCF	3.42	7.20
CCN	7.22	14.3
TIL	2.00	9.29

Conclusions

- Quality concrete can be made with RCA following the DVR method. The strengths of the mixes with 50% RCA replacement differed from their NA counterparts by approximately \pm 10%; for 100% RCA replacement the difference was \pm 20%.
- A model created to predict the strength of RCA concrete mixes based on the absorption and DRCA of a subset of all available data needs further development this is future work planned by the project team.

Conclusions

- The variability of RCA properties available for purchase was reasonably large for gradation (many sold as road base or for other applications other than concrete making) and for deleterious material (ranging from 1.87% to 35.1% over the data set studied).
- The specific gravity of the RCA samples was also variable, ranging from 2.1 to 2.5
- The absorption of the RCA data set ranged from approximately to 10%, and it was linearly related to the RCA specific gravity.

College of Engineering

Acknowledgments

- National Science Foundation (NSF), http://www.nsf.gov/
- Project #: 1436758

