Marketable Skills for Computer Science ## Degree and Major: <u>Bachelor of Science in Computer Science</u> After completing the **BS** in computer science degree program at UT Tyler, the student can: | Soft Skills: | Hard Skills: | Unique Features of Program | |---|--|---| | Demonstrate proficiency in technical
writing, oral and written communication,
diagramming and requirements gathering. | Demonstrate technical competence in the
general software development life cycle:
problem analysis, design, coding, testing,
and implementation. | Success coaches provide beyond-
classroom assistance for lower-division
courses. | | Demonstrate competence in software
development documentation, group
presentations, UML and E-R diagrams. | Demonstrate proficiency in programming
in structured language(s): logical thinking,
problem solving, problem decomposition,
and coding. | Students throughout their degree program
are provided opportunities for hands-on
experiences in specialized computing
laboratories. | | • Demonstrate global awareness and social responsibility as related to the impact of automation, impact of technological advances, cybersecurity, ethics education, and intellectual property laws. | Demonstrate proficiency in programming
in object-oriented language(s): logical
thinking, problem solving, problem
decomposition, and coding. | Special dedicated classrooms provide a
desktop computer for each student to
optimally enhance direct, in-class, hands-
on learning opportunities. | | Demonstrate leadership and teamwork by
working in groups to achieve goals of
software development. | Demonstrate proficiency in abstract data
structure types, techniques of algorithm
analysis, and the theory of computation. | Multidisciplinary teamwork required in capstone projects with other (i.e. CIS and IT) computing degree majors. | | Demonstrate technical knowledge of all aspects of cybersecurity including standards, compliance, and management. | Demonstrate a deep understanding of
structured systems including basic
computer organization and hardware
architecture. | Special topic electives which provide
students with contemporary knowledge
and skills spanning the most current
aspects of professional computing. | | | Demonstrate technical competence in
computer networks: cybersecurity the
Internet, web development, cryptography,
troubleshooting, and programming. | Special career success opportunities
linking students with prospective
employers for jobs and internships. | | | Demonstrate an implementation-level
understanding of databases including
design, integrity, and security. | | | | Demonstrate an in-depth understanding of operating systems including process scheduling, memory management, and I/O management with special focus on Windows and UNIX. | |