Logistic regression

Venugopal Gopalakrishna-Remani (Venu), Ph.D., BVSc & A.H, MBA, PGDPM, ACUE

The University of Texas at TF VILLER BODY OF TEXAS

Your Success. Our Passion.

What is logistic regression?

Estimate (guess) the probability of an event given some previous data. Works with binary data, event happens (1) or the event does not happen (0).

Outcome & independent Variables

- Two possible outcomes, "0" and "1" ("dead" vs. "alive" or "win" vs. "loss")
- Prediction is based on what?
- Is the independent variable
- Predict a student pass or fail in an exam based on the number of hours spent studying.
- Number of hours studied become independent variable
- We can also consider his/her IQ and that becomes another dependent variable and so on

When should you use logistic regression?

- To predict the likelihood of an event to occur
- To understand the relationship between the dependent variable and one or more independent variables by estimating probabilities using a logistic regression equation.

Logistic regression

- With 14 points, 4 rebounds and 5 assists, will Dr.V will make it to the awesome team?
- WE WILL SOLVE THIS AT THIS ONLINE WORKSHOP:
- Pic Credit: https://www.shutterstock.com/imagephoto/back-view-basketball-playerholding-against-

PROCESS 1: INSTALLING SOFTWARE

- Go to Real Statistics .com (<u>https://www.real-statistics.com/</u>)
- Click on Free Download
- Download Real Statistics resource pack
- Click on the download and install it
- Go to Excel Home > Options > Add ins >Browse
- Browse >downloads> XrealStats.Xlam
- Once added in> addins

Pack and/or the Examples V

aded and installed the Real the supplemental capabilitie

► > Th	is PC → Downloads	
ew fold	er	
* ^	Name	Date modified
h	∨ Today (1)	
,	RealStats.xlam	3/2/2021 12:02 PM

Add-ins	? ×
Add-in: anallable: C Bradysis ToolPak Analysis ToolPak - VBA Euro Currency Tools Solver Add-in	Cancel Browse Aytomation

×	XRealStats.xlam	^

Data set

*

Sample Size

- Sample Size:
- Equation is 10k/q where k = the number of independent variables and q = the smaller of the percentage of cases with y = 0 or y = 1, with a minimum of 100.
- For Example 1, k = 2 and q = 200/500 = .40, and so 10k/q = 50. A minimum sample of size 100 is recommended.

Process

- Excel
- > Add-ins
- >Real Statistics> Data Analytic tools
- >Reg>Logit and Probit regression
- Select Input Range to Fill
- > Select Output Range New
- >OK

★

Clipboa	rd	G	Font		G		Alignment		G.	Numbe	r G	2					Styles						C	Cells		Editing
024	• = :	× ✓	<i>f</i> _x =3.	68118 + 0.1	11283*(14)	- (0. 395684)	*(4) + 0.67	9539*(5))																		
A	В	С	D	E	F	G	н	1	J	К	L	М	Ν	0	Ρ	Q	R	S	Т	U	v	W	х	Y	Z	AA
Logistic Re	egression																									Classificat
				-			-																			
pts	reb	assists	Success	Failure	Total	p-Obs	p-Pred	Suc-Pred	Fail-Pred	Ш	% Correct	HL Stat		Coeff		LLO	-8.31777		Covariance	e Matrix				Converge		
12	3	6	0	1	. 1	0	0.557043	0.557043	0.442957	-0.81428	0	1.257558				LL1	-5.94277		20.24499	-0.36894	-0.77876	-1.99424		-6.4E-17		Suc-Pred
12	9	9	1	0	1	1	0.990453	0.990453	0.009547	-0.00959	100	0.009639		-3.68118					-0.36894	0.046172	-0.06067	-0.01828		1.78E-16		Fail-Pred
13	4	4	1	0	1	1	0.300052	0.300052	0.699948	-1.2038	0	2.332758		-0.11283		Chi-Sq	4.75		-0.77876	-0.06067	0.252716	0.109848		-3E-16		
13	4	6	0	1	. 1	0	0.625281	0.625281	0.374719	-0.98158	0	1.66867		0.395684		df	3		-1.99424	-0.01828	0.109848	0.352062		-2.7E-16		
14	4	4	0	1	. 1	0	0.276902	0.276902	0.723098	-0.32421	100	0.382939		0.679539		p-value	0.191046									Accuracy
14	4	5	1	0	1	1	0.43037	0.43037	0.56963	-0.84311	0	1.32358				alpha	0.05									
) 17	2	2	0	1	. 1	0	0.030804	0.030804	0.969196	-0.03129	100	0.031783				sig	no									Cutoff
1 17	6	5	1	0	1	1	0.543029	0.543029	0.456971	-0.61059	100	0.841523														
2 21	5	7	1	0	1	1	0.66477	0.66477	0.33523	-0.40831	100	0.50428				R-Sq (L)	0.285533									
3 21	9	3	0	1	. 1	0	0.389171	0.389171	0.610829	-0.49294	100	0.637119				R-Sq (CS)	0.326881									
1 24	4	5	0	1	. 1	0	0.196451	0.196451	0.803549	-0.21872	100	0.24448				R-Sq (N)	0.435841									
5 24	11	11	1	0	1	1	0.995672	0.995672	0.004328	-0.00434	100	0.004346														
5			6	6	12			6	6	-5.94277	66.66667	9.238676				Hosmer	9.238676									
<u> </u>																df	10									
3	coeff b	s.e.	Wald	p-value	exp(b)	lower	upper									p-value	0.509612									
) Intercept	-3.68118	4.499443	0.669353	0.413277	0.025193											alpha	0.05									
) pts	-0.11283	0.214878	0.27571	0.599527	0.893304	0.586267	1.361142									sig	no				- 1	KOC CU	rve			
l reb	0.395684	0.502709	0.619531	0.431221	1.485399	0.554545	3.978776												1 -				•	•	•	•
2 assists	0.679539	0.593349	1.311623	0.252101	1.972968	0.616681	6.312178												0.9 -			•	•			
3																			- 0.8 يو			•	•			
1														0.280369					20.7 -			٠				
>														0.569637					10.0 -		•	•				
5																			å 0.4 -		·					
(je 0.3	•						
5																			F 0.2 -	•						
2																			0.1 -							
,																				0	0.2	0.4	0.6	0.8		1
																			Ì	0	0.2	Ealse Dos	itive Rate			-
2																						Fuise POs	nive nate			
2																										
;																										
1																										

*

	Α	В	С	D	E	F	G	н	1	J	к	L	м	N	0	P	2	R	S T	1	v v	w	X	Y	1 :
1	Logistic R	egression								-															
2	0	0																							
3	pts	reb	assists	Success	Failure	Total	p-Obs	p-Pred	Suc-Pred	Fail-Pred	LL	% Correct	HL Stat	Co	eff	LL0	-8	.31777	Covar	iance Mat	rix			Converge	2
4	. 12	3	. (i () 1	1	, 0	0.557043	0.557043	0.442957	-0.81428	0	1.257558			111	-5	.94277	20.2/	499 -0.3	6894 -0.778	76 -1.994	424	-6.4E-17	7
5	12	9	9) 1	L 0	1	1	0.990453	0.990453	0.009547	-0.00959	100	0.009639	-3	3.68118				-0.3	5894 0.04	6172 -0.060	67 -0.018	328	1.78E-16	5
6	13	4	. 4	I 1	L 0	1	1	0.300052	0.300052	0.699948	-1.2038	0	2.332758	-(0.11283	Chi-	Sq	4.75	-0.7	/876 -0.0	6067 0.252	16 0.1098	48	-3E-16	5
7	13	4	. (5 0) 1	1	0	0.625281	0.625281	0.374719	-0.98158	0	1.66867	0.	.395684	df		3	-1.9	424 -0.0	1828 0.1098	48 0.3520	162	-2.7E-16	5
8	14	4	. 4	t C) 1	1	0	0.276902	0.276902	0.723098	-0.32421	100	0.382939	0.	.679539	p-va	lue 0.:	91046							
9	14	4		5 1	L 0	1	1	0.43037	0.43037	0.56963	-0.84311	0	1.32358			alph	a	0.05							
10	17	2	2	2 0) 1	1	0	0.030804	0.030804	0.969196	-0.03129	100	0.031783			sig		no							
11	17	6	5	5 1	L 0	1	1	0.543029	0.543029	0.456971	-0.61059	100	0.841523												
12	21	5	1	7 1	L 0	1	1	0.66477	0.66477	0.33523	-0.40831	100	0.50428			R-So	(L) 0.3	285533							
13	21	9	8	3 C) 1	1	0	0.389171	0.389171	0.610829	-0.49294	100	0.637119			R-So	(CS) 0.3	26881							
14	24	4	. 5	5 C) 1	1	0	0.196451	0.196451	0.803549	-0.21872	100	0.24448			R-Sc	(N) 0.4	35841							
15	24	11	. 11	l 1	L 0	1	1	0.995672	0.995672	0.004328	-0.00434	100	0.004346												
16				e	5 6	12			6	i 6	-5.94277	66.66667	9.238676			Hos	ner 9.3	38676							
17																df		10							
18		coeff b	s.e.	Wald	p-value	exp(b)	lower	upper								p-va	lue 0.	09612							
19	Intercept	-3.68118	4.499443	0.669353	0.413277	0.025193										alph	a	0.05							
20	pts	-0.11283	0.214878	0.27571	0.599527	0.893304	0.586267	1.361142								sig		no				ROC	Curve		
21	reb	0.395684	0.502709	0.619531	0.431221	1.485399	0.554545	3.978776												1					
22	assists	0.679539	0.593349	1.311623	0.252101	1.972968	0.616681	6.312178												0.9					
23																			u	0.8		•	•		
24														0.	.280369				Rat	0.7		•			
25														0.	.569637				tive	0.6					
26																			osi	0.5	•	•			
27																			ue P	0.3					
28																			Ē	0.2					
29																				0.1					
30																				0 +	0.0			1	
31																				U	0.2	0.4	0 - D111 D	.o 0	J.8
32																						Fals	Positive Ra	ite	
33																									
34																									_
35																									-
36																									

References

+

0

- You can download the realstats from https://www.real-statistics.com/freedownload/real-statistics-resourcepack/
- Basketball data from <u>https://www.statology.org/logistic-</u> <u>regression-excel/</u>

Photo credits

 Pic Credit: https://www.shutterstock.com/imagephoto/back-view-basketball-player-holdingagainst-

