Logistic Regression

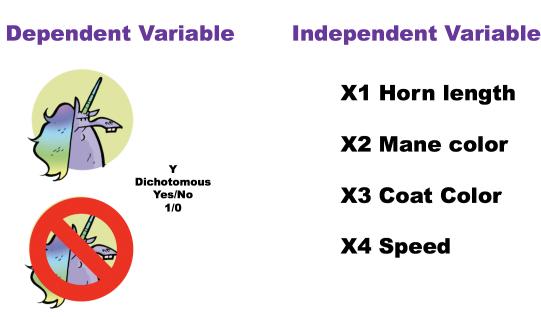
Samantha Estrada PhD

ORSSP Research Design & Data Analysis Lab Consultant University of Texas at Tyler

10/21/2022

Contents

Potential applications of logistic regression	1
Brief Probability Review	2
Odds Ratio	3
Example: Logistic Regression	3
Data	3
Research Question	3
Descriptives	3
jamovi Logistic Regression	4
Collinearity	5
Output: Logistic Regression	5
Model Fit & Effect Size	5
Model Coefficients	7
Resources	8
References	8


In simple and multiple linear regression outcome and predictor variable(s) were continuous data. In logistic regression our outcome and dependent variable will be a binary predictor.

Potential applications of logistic regression

• Retention studies

- i.e., want to examine factors which predict whether college students will or will not stay in school

• Marriage/family studies

- e.g., might look at variables which predict which couples will or will not divorce or factors which predict
- Medical research
 - Factors distinguishing between those who will and will not survive (e.g., surgery, a particular illness, etc.)
- Since logistic regression is nonparametric, you have more flexibility with variables because there are no normality assumptions.
- The outcome variable is categorical. The predictor variables can be a mix of categorical or continuous variables
- Logistic regression is all about predicting the odds that a given outcome will occur.
 - Odds are different than probabilities.
 - Probabilities range from 0-1
 - Odds can range from negative infinity to positive infinity.
 - Positive odds means a thing is more likely to occur, and negative odds mean a thing is less likely to occur

Brief Probability Review

- Probabilities are simply the likelihood that something will happen; a probability of .20 of rain means that there is a 20% chance of rain.
- If there is a 20% chance of rain, then there is an 80% chance of no rain; the odds, then, are:

$$Odds = \frac{prob(rain)}{prob(norain)} = \frac{20}{80} = \frac{1}{4} = .25$$

- Remember that probability can range from 0 to 1. But the odds can be greater than 1.
 - For instance, a 50% chance of rain has odds of 1.

Odds Ratio

- Odds ratio (OR) is the effect size for logistic regression
- Odds ratios greater than 1 = increase of the odds of that outcome
- Odds ratios less than 1 = decrease in the odds of that outcome.
- The comparison group is the group coded as 0.
 - So if your odds ratio is greater than 1, you have an increase in the odds of being in the 1 group.
 - Less than 1 decrease in odds of the 1 group (or increase in the 0 group).

Example: Logistic Regression

Data

The data for this example is available in logistic.omv The dataset for this example contains N = 275 observations and seven variables.

In the following example we would like to predict heart attacks in males from the following data:

- Nominal DV: Heart Attack where 0=no heart attack and 1=heart attack.
- Continuous IV: AGE in years
- Continuous IV: Systolic blood pressure (SYSBP)
- Continuous IV: Diastolic blood pressure (DIABP)
- Continuous IV: Cholesterol (CHOLES)
- Continuous IV: Height (HT) height in inches
- Continuous IV: Weight (WT) weight in pounds

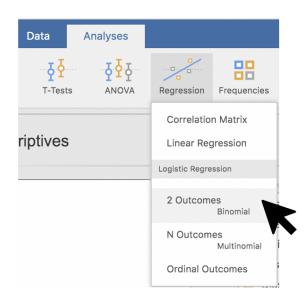
Research Question

Do body weight, height, blood pressure and age have an influence on the probability of having a heart attack (yes vs. no)?

Descriptives

Let's explore the dataset by running descriptives. In the Analysis tab, click on Exploration next select Descriptives from the menu.

	Heart Attac	k Age	Weigh	t Systolic Bloc	od Pressure	Diastolic Blood Pressure	Cholesterol	Heigh
N	275	27	5 275		275	275	275	275
Missing	0		D 0		0	0	0	C
Mean		45.	0 168		124	83.0	297	68.5
Median		45.	0 166		120	80.0	285	68.0
Minimum		23.	0 108		90.0	55.0	135	62.0
Maximum		70.	0 262		190	112	520	74.0
	ies cies of Heart .	Attack						
	cies of Heart		% of Total	Cumulative %				
Frequen	cies of Heart		% of Total 63.6 %	Cumulative % 63.6 %				


63.6% of the patients have not had a heart attack, and 36.4% of the patients have had one.

Sample Size Requirements

- In terms of the adequacy of sample sizes, the literature has not offered specific rules applicable to logistic regression (Peng et al., 2002).
- Several authors on multivariate statistics (Tabachnick & Fidell, 2019) have recommended:
 - A minimum ratio of 10 (observations) to 1 (variable), with a minimum sample size of 100 or 50

jamovi Logistic Regression

Under the Analysis tab select the Regression option, then select the 2 Outcomes Binomial option.

Place Heart Attack in the Dependent Variable option and the rest of the IVs in the covariates box.

Binomial Logistic Regression			\bigcirc
	Depender → 🔗 Hear Covariate		
	→ Age	olic Blood Pressure colic Blood Pressure esterol	
	→ Heiα	ht	
			<u>&</u>

Collinearity

- We don't want to have variables that explain the same thing in our regression, or that are too highly correlated.
- Logistic regression does not have to meet the assumptions of normality or heterogeneity of variance, but we do have to check for multicollinearty.

✓ Assumption Checks	Assumption Checks		
Collinearity statistics	Collinearity Statistics		
> Model Fit		VIF	Tolerance
	Age	1.34	0.746
Model Coefficients	Systolic Blood Pressure	3.46	0.289
	Diastolic Blood Pressure	3.76	0.266
> Estimated Marginal Means	Cholesterol	1.10	0.913
a las ana	Height	1.31	0.761
> Prediction	Weight	1.43	0.699

Everything looks good according to our rules of thumb VIF < 10 and Tolerance > .01

Output: Logistic Regression

Model Fit & Effect Size

Under the Model Fit submenu select Deviance,Overall model test, and all the pseudo R^2

✓ Model Fit		F	linom	ial Logis [.]	tic Pea	ression				
Fit Measures V Deviance	Pseudo R ² McFadden's R ²			leasures	tie Regi	10331011				
AIC BIC	Cox & Snell's R ² Nagelkerke's R ²	-	Model	Deviance 288	R ² McF	R ² CS 0.231	R ² N 0.316	Over X ² 72.3	rall Model ⁻ df 6	p <.001
Overall model test		-		1		2]		3	

- 1. *Deviance*: This stat shows the predictive success of the model. The smaller the number, the better the model (in SPSS this is called 2 Log Likelihood in case you ever need to know).
- 2. Cox & Snell R^2 and Nagelkerke R^{2*} : These two numbers in the model summary box are similar to R^2 in multiple regression (a proportion of the variance in the DV accounted for by the variables in model). We will report both of them as "% of variance accounted for".
 - Effect size notes: Cox and Snell R^2 based on likelihoods and sample size BUT never can reach 1, even if you achieve perfect fit.
 - Use Nagelkerke R^2 which adjusts Cox and Snell so that the upper limit is 1 (most people report this type of effect size.)
- 3. Overall Model Test tests how well the model performs to predict the outcome. We want the omnibus chi-square for the model to be *significant*, and we will report it in our write-up.
 - Ho: the model with no independent variables fits the data as well as your model.
 - Ha: Your model fits the data better than the intercept-only model.

$Under the \ensuremath{\,\mbox{Prediction}}$ submenu select Classification Table

- Classification Table: We will report the Accuracy as a percentage correct in our write-up. so .702 x 100% = 70.2%

✓ Prediction		
Cut-Off	Predictive Measures	ROC
Cut-off plot	Classification table	ROC curve
Cut-off value 0.5	Accuracy	AUC
	Specificity	
	Sensitivity	

Prediction

Classification Table – Heart Attack

	Predic	ted	
Observed	No Heart Attack	Heart Attack	% Correct
No Heart Attack	142	33	81.1
Heart Attack	49	51	51.0

Note. The cut-off value is set to 0.5

Predictive Measures

Accuracy

0.702

Note. The cut-off value is set to 0.5

- Accuracy: (142+51) / (142+33+49+51) = 70.2%
- *Sensitivity* is the percentage of cases that had the observed outcome was correctly predicted by the model (i.e., true positives).
 - Sensitivity: 142/(142+33)*100 = 81%
- *Specificity* is the percentage of observations that were also correctly predicted as not having the observed outcome (i.e., true negatives).
 - Specificity: 51 /(49+51)*100 = 51%

The classification table is shown. In this example, our prediction accuracy of those that didn't have a heart attack is high (81.1%) while our prediction accuracy of those that did have a heart attack is low (51.0%). Our overall accuracy rate is 70.2%.

Model Coefficients

nnibus Tests			o	dds Ra	tio		
Likelihood rati	o tests			🔽 Oc	lds ratio		
					onfidence	interval	
timate (Log Odds	Ratio)			00			
				Inte	rval 95	%	
Confidence int	erval						
Interval 95	%						
		2					
	ſ	3					
lodel Coefficients - Heart	Attack	3					
odel Coefficients - Heart	Attack	3				95% Confide	nce Interval
odel Coefficients - Heart Predictor	Attack Estimate	3 Se	Z	p	Odds ratio	95% Confide Lower	nce Interval Upper
Predictor	+	SE 5.07619	Z -1.050	p 0.294	Odds ratio 0.00485		
Predictor	Estimate					Lower	Upper
Predictor Intercept Age	Estimate	5.07619	-1.050	0.294	0.00485	Lower 2.32e-7	Upper •
Predictor Intercept Age Weight	Estimate -5.32860 0.07229	5.07619 0.01649	-1.050 4.384	0.294 <.001	0.00485 1.07496	Lower 2.32e-7 1.041	Upper 101.55 1.11
Addel Coefficients - Heart Predictor Intercept Age Weight Height Cholesterol	Estimate -5.32860 0.07229 0.02084	5.07619 0.01649 0.00677	-1.050 4.384 3.079	0.294 <.001 0.002	0.00485 1.07496 1.02106	Lower 2.32e-7 1.041 1.008	Upper 101.55 1.11 1.03
Predictor Intercept Age Weight Height	Estimate -5.32860 0.07229 0.02084 -0.05316	5.07619 0.01649 0.00677 0.07080	-1.050 4.384 3.079 -0.751	0.294 <.001 0.002 0.453	0.00485 1.07496 1.02106 0.94822	Lower 2.32e-7 1.041 1.008 0.825	Upper 101.55 1.11 1.03 1.09

Note. Estimates represent the log odds of "Heart Attack = Heart Attack" vs. "Heart Attack = No Heart Attack"

This table is similar to the coefficients table in multiple regression. We will report these results in two ways: make a regression table reporting the coefficients, standard error, significance; and we will highlight descriptively in the text of our results which predictors significantly contributed to predicting the DV. You can also select to report the 95% confidence interval (under the Model Coefficients menu).

Interpreting Odds Ratio

What if...?

• Scenario 1 Imagine height was significant and the odds ratio (OR) was .94. Then we would interpret the odds ratio like this:

The odds ratio indicates that for every unit increase in height the odds of the outcome decrease by a factor of .94.

Odds Ratio for Categorical Variables

• Scenario 2 Imagine that Weight is a categorical variable coded as in Weight = 0 means "not overweight" and Weight = 1 is "overweight." Then we would interpret the odds ratio like this:

The odds that a person will experience the outcome are 1.02 times higher for those who are overweight than for those who are not.

Resources

- Research Design & Data Analysis Lab: https://www.uttyler.edu/research/ors-research-design-dataanalysis-lab/
- Schedule a consultant appointment with me: https://www.uttyler.edu/research/ors-research-design-data-analysis-lab/ors-research-design-data-analysis-lab-consultants/
- Check out Lab Resources (including recording of this webinar): https://www.uttyler.edu/research/ors-research-design-data-analysis-lab/resources/

References

Peng, C.-Y. J., Lee, K. L., & Ingersoll, G. M. (2002). An introduction to logistic regression analysis and reporting. The Journal of Educational Research, 96(1), 3–14.

Tabachnick, B. G., & Fidell, L. S. (2019). Using multivariate statistics. Pearson.