

MACHINE LEARNING: CLASSIFICATION

PREMANANDA INDIC, PH.D.

DEPARTMENT OF ELECTRICAL ENGINEERING

ORS Research Design & Data Analysis Lab
Office of Research and Scholarship

ANALYSIS PLATFORM

University of Texas at Tyler

Get Software

Learn MATLAB

Teach with MATLAB

What's New

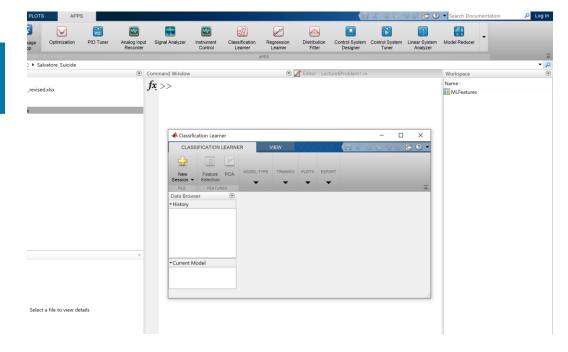
MATLAB R2021b

MATLAB Access for Everyone at

University of Texas at Tyler

https://www.mathworks.com/academia/tah-portal/university-of-texas-at-tyler-1108545.html

ANALYSIS PLATFORM



University of Texas at Tyler

Get Software Learn MATLAB Teach with MATLAB What's New

MATLAB Access for Everyone at

University of Texas at Tyler

https://www.mathworks.com/academia/tah-portal/university-of-texas-at-tyler-1108545.html

OUTLINE

- **INTRODUCTION**
- > DIFFERENT CLASSIFIERS
- **EXAMPLES**

OUTLINE

- **INTRODUCTION**
- > DIFFERENT CLASSIFIERS
- **EXAMPLES**

INTRODUCTION

➤ What is Machine Learning?

- Machine Learning is a field of study that gives computers the ability to "learn" without being explicitly programmed
 - Prediction
 - Classification

INTRODUCTION

➤ What is Machine Learning?

- Machine Learning is a field of study that gives computers the ability to "learn" without being explicitly programmed
 - Prediction
 - Classification

OUTLINE

- **INTRODUCTION**
- **▶** DIFFERENT CLASSIFIERS
- **EXAMPLES**

>SUPERVISED LEARNING

>UNSUPERVISED LEARNING

>SUPERVISED LEARNING (Classification / Prediction)

Provide training set with features and solutions

>STANDARD MACHINE LEARNING

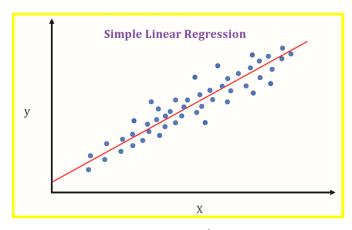
> ADVANCED MACHINE LEARNING

Based on Artificial Neural Networks (Deep Learning)

- **CLASSIFICATION**
 - Logistic Regression
 - Support Vector Machine

- **CLASSIFICATION**
 - Logistic Regression
 - Support Vector Machine

Linear Regression

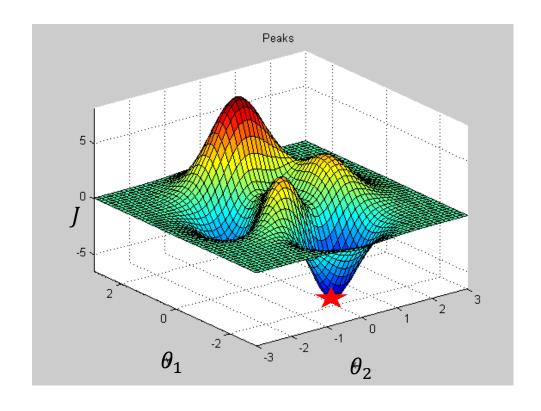

$$\hat{y}^i = \theta_0 + \theta_1 x_1^i + \theta_2 x_2^i + \dots + \theta_n x_n^i$$
 $i = 1, 2, \dots m$

$$\widehat{Y} = \Theta^T X$$

- Gradient Descent by Louis Augustin Cauchy in 1847

Cost Function to Minimize

$$J = \langle (\hat{y}^i - y^i)^2 \rangle = (\hat{Y} - Y)^T (\hat{Y} - Y) = \frac{1}{m} \sum_{i=1}^m (\theta^T X^i - y^i)^2$$

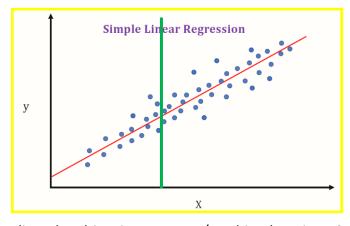


https://medium.datadriveninvestor.com/machine-learning-101-part-1-24835333d38a

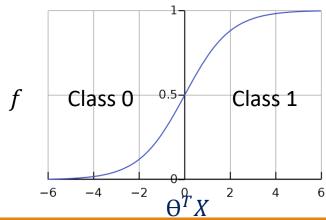
≻Linear Regression

$$\Theta^{k+1} = \Theta^k - \gamma \nabla_{\Theta} J(\Theta)$$

$$\nabla_{\Theta} \mathsf{J}(\Theta) = \frac{2}{m} X^{T} (X\Theta - Y)$$

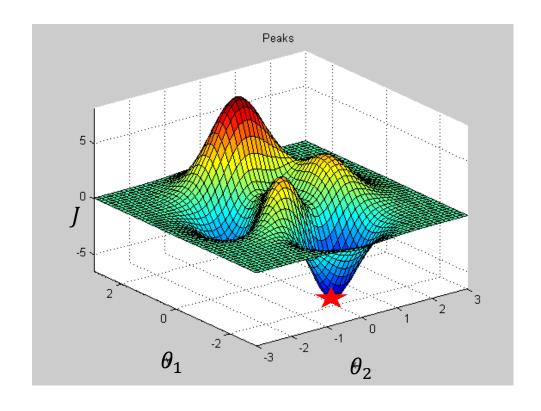

>Logistic Regression

Two class y = 1 or y = 0


$$\hat{p} = f(\Theta^T X) = \frac{1}{1 + e^{-\Theta^T X}}$$

$$\hat{y} = 1 i f \hat{p} < 0.5; \ \hat{y} = 0 i f \hat{p} \ge 0.5$$

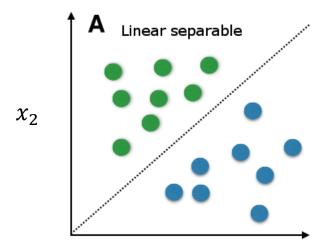
$$J = \frac{1}{m} \sum_{i=1}^{m} \left[y^{i} \log(\hat{p}^{i}) + (1 - y^{i}) \log(1 - \hat{p}^{i}) \right]$$

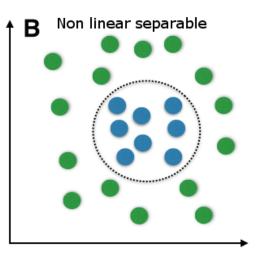

https://medium.datadriveninvestor.com/machine-learning-101-part-1-24835333d38a

≻Logistic Regression

$$\Theta^{k+1} = \Theta^k - \gamma \nabla_{\Theta} J(\Theta)$$

$$\frac{\partial}{\partial \theta_i} J(\Theta) = \frac{1}{m} \sum_{i=1}^m (f(\Theta^T X^i) - y^i) x_j^i$$

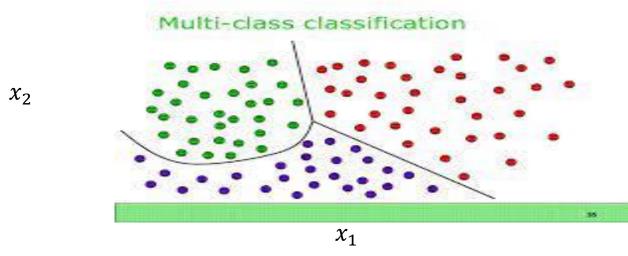



>Support Vector Machine

$$G(x_j, x_k) = \exp(-\|x_j - x_k\|^2)$$

 $G(x_j, x_k) = (1 + x_j'x_k)^q$, where q is in the set {2,3,...}.

$$f(X) = w^T X - b$$



 x_1

https://medium.com/@LSchultebraucks/introduction-to support-vector-machines-9f8161ae2fcb

- >SUPERVISED LEARNING (Classification / Prediction)
 - Support Vector Machine (SVM)

Used for regression as well as classification

https://www.mathworks.com/matlabcentral/fileexchange/62061-multi-class-svm

- >SUPERVISED LEARNING (Classification)
 - Logistic Regression
 - Support Vector Machines
 - k-Nearest Neighbors
 - Decision Trees and Random Forests

► Home Value Classification: 9 features to classify high vs low medianHouseValue

longitude: A measure of how far west a house is; a higher value is farther west

latitude: A measure of how far north a house is; a higher value is farther north

housingMedianAge: Median age of a house within a block; a lower number is a newer building

totalRooms: Total number of rooms within a block

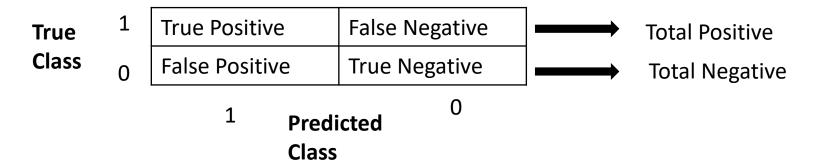
totalBedrooms: Total number of bedrooms within a block

population: Total number of people residing within a block

households: Total number of households, a group of people residing within a home unit, for a block

medianIncome: Median income for households within a block of houses (measured in tens of thousands of US Dollars)

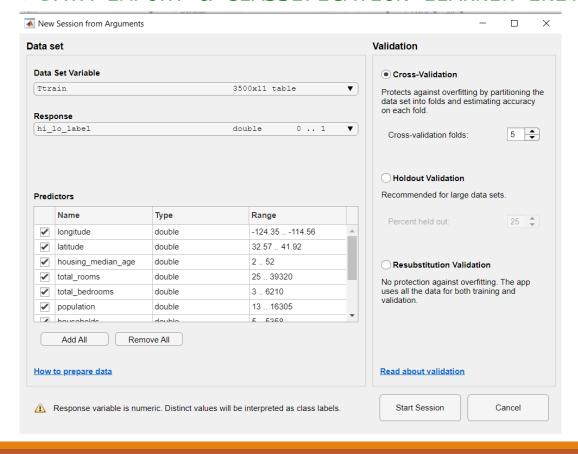
medianHouseValue: Median house value for households within a block (measured in US Dollars)

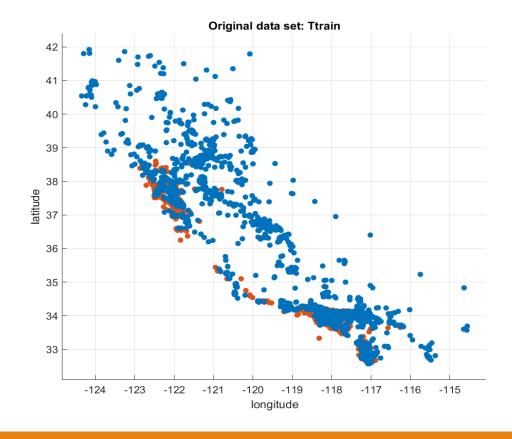

oceanProximity: Location of the house w.r.t ocean/sea

Demo with N=5000 70% Training Data 30% Test Data Models Trained: Logistic Regression SVM

https://www.kaggle.com/camnugent/california-housing-prices

> Prediction of House Price Classification Problem

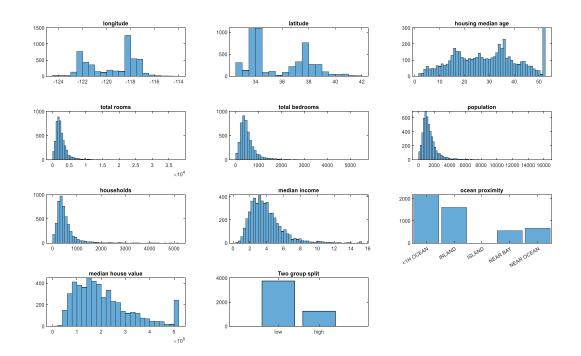

Confusion Matrix



True Positive Rate = True Positive / Total Positive

True Negative Rate = True Negative / Total Negative = 1 - False Positive Rate

► DATA IMPORT & CLASSIFICATION LEARNER INITIALIZATION


► DATA IMPORT & CLASSIFICATION LEARNER INITIALIZATION

```
classificationLearner(Ttrain, 'hi_lo_label');
```

Demo with logistic regression and linear SVM

SECTION 2: Raw Data Analysis

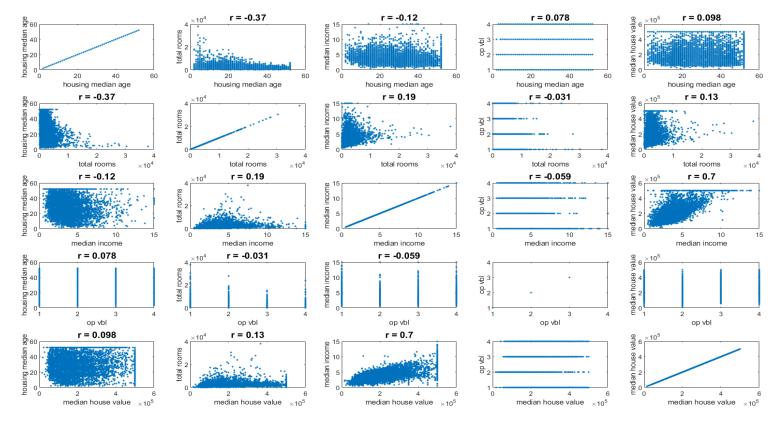
Visualize the data, Summarize variables, data cleaning, pre-processing if needed

207 Missing values, replace with median values

ocean_proximity: 20636×1 categorical Values:

<1H OCEAN 9135

INLAND 6550


ISLAND 5

NEAR BAY 2289

NEAR OCEAN 2657

SECTION 3: Correlation Analysis

FIND VARIABLE CORRELATIONS TO EACH OTHER AND THE MEDIAN HOUSE VALUE

[R,pp] = corr(table2array(T1(:,select vars)));

SECTION 4: Logistic Regression

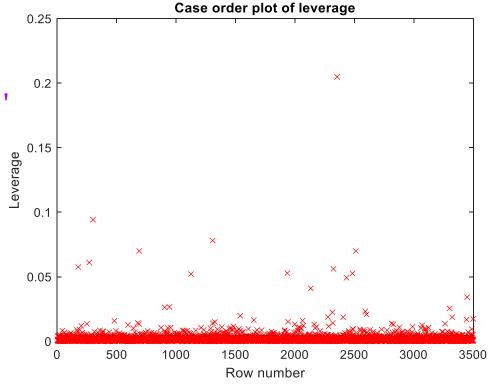
SPLIT INTO TRAINING AND TEST DATA AND FIT LOGISTIC REGRESSION MODEL

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	-154.19	14.421	-10.692	1.1065e-26
longitude	-1.7683	0.17448	-10.135	3.8752e-24
latitude	-1.8133	0.18885	-9.6018	7.8546e-22
housing_median_age	0.044239	0.0051484	8.5928	8.4901e-18
total_rooms	0.0003444	9.7387e-05	3.5364	0.00040561
total_bedrooms	0.00080298	0.00084259	0.95299	0.3406
population	-0.0023529	0.00020995	-11.207	3.7737e-29
households	0.0039573	0.00094559	4.185	2.8517e-05
median_income	1.0172	0.053904	18.87	2.0101e-79
ocean_proximity_INLAND	-0.053285	0.24937	-0.21368	0.8308
ocean_proximity_ISLAND	0	0	NaN	NaN
ocean_proximity_NEAR BAY	-0.10616	0.19861	-0.53449	0.593
ocean_proximity_NEAR OCEAN	0.11076	0.15948	0.6945	0.48737

```
mdl = fitglm([Ttrain(:,1:9)
table(y)], 'Distribution', 'binomial');
```

3500 observations, 3488 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.83e+03, p-value = 0


Remove Insignificant features

SECTION 5: Outliers

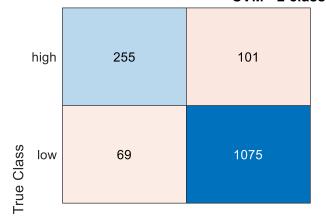
DIAGNOSTICS OF MODELS- IDENTIFY OUTLIERS

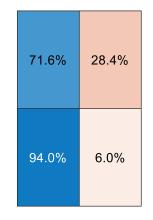

```
mdl1 = fitglm([Ttrain(:,[1:4 6:8])
table(y,'variablenames',{'Hi_lo_label'})],'
Distribution','binomial');
```

plotDiagnostics(mdl1, 'leverage')

SECTION 6: Classification (Clean Data)

TEST MODEL FOR TWO CLASS CLASSIFICATION (Logistic Regression)

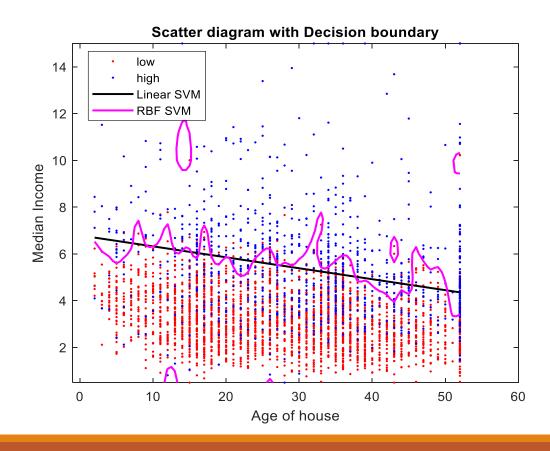

Test Data N = 1500 (30% of 5000)


Missing Values
Insignificant Features
Outliers

SECTION 7: SVM Classification

REGULARIZATION OF VARIABLES DONE AUTOMATICALLY, NO NEED TO CHOOSE FEATURES SEPARATELY AS WAS DONE EARLIER FOR LOGISTIC REGRESSION

SVM - 2 class

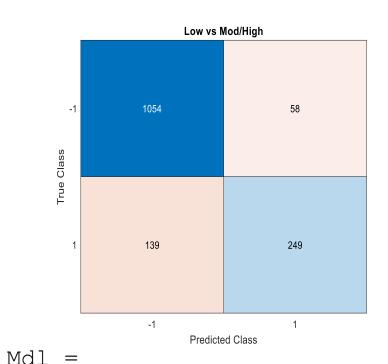

Test Data N = 1500 (30% of 5000)

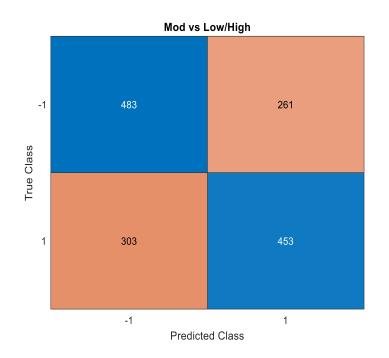
Linear SVM

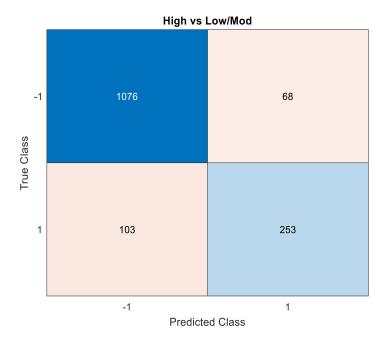
SVMModel = fitcsvm(Ttrain(:,1:9),y,'standardize',true);

SECTION 8: SVM Classification

LINEAR vs RADIAL BASIS FUNCTION (RBF) KERNEL

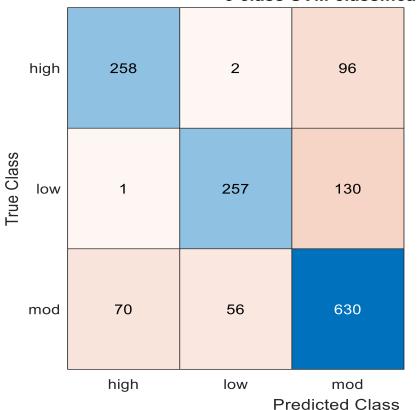


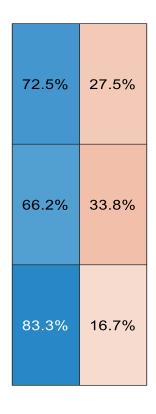

```
fitcsvm([x1 x2],y1);
fitcsvm([x1 x2],y1,'KernelFunction','rbf');
    x1: Age of House
    X2: Median Income
```


SECTION 9: Multiclassification (SVM)

ONE CLASS vs REST

Also perform one to one class


SECTION 10: Multiclassification (SVM)


LOW vs MOD vs HIGH CLASS

```
Mdlp =
fitcecoc(Ttrain(:,1:8),y,'Learner
s',t,'FitPosterior',true,...

'ClassNames',{'low','mod','high'}
,...
'Verbose',2);
```

3 class SVM classification

CONCLUSION

- Classification divides the data into different groups
- Look at the raw data and understand features in relation to class designation
- > Several codes are available to perform classification

THANK YOU

SBIR: RAE (Realize, Analyze, Engage) - A digital biomarker based detection and intervention system for stress and carvings during recovery from substance abuse disorders.

PIs: M. Reinhardt, S. Carreiro, P. Indic

STARs Award

The University of Texas System *P. Indic (PI, UT Tyler)*

ORS Research Design & Data Analysis Lab

Office of Research and Scholarship

Department of Veterans Affairs

Design of a wearable sensor system and associated algorithm to track suicidal ideation from movement variability and develop a novel objective marker of suicidal ideation and behavior risk in veterans. Clinical Science Research and Development Grant (approved for funding),

P. Indic (site PI, UT-Tyler)
E.G. Smith (Project PI, VA)
P. Salvatore (Investigator I

P. Salvatore (Investigator, Harvard University)

Design of a wearable biosensor sensor system with wireless network for the remote detection of life threatening events in neonates.

National Science Foundation Smart & Connected Health Grant

P. Indic (Lead PI, UT-Tyler)

D. Paydarfar (Co PI, UT-Austin)

H. Wang (Co PI, UMass Dartmouth)

Y. Kim (Co PI, UMass Dartmouth)

Pre-Vent

National Institute Of Health Grant

P. Indic (Analytical Core PI, UT-Tyler)

N. Ambal (PI, Univ. of Alabama, Birmingham)

ViSiOn

P. Indic (site PI, UT-Tyler)
P. Ramanand (Co-I, UT Tyler

N. Ambal, (PI, Univ. of Alabama, Birmingham)

QUESTIONS