

#### **MACHINE LEARNING: CLASSIFICATION**

### PREMANANDA INDIC, PH.D. DEPARTMENT OF ELECTRICAL ENGINEERING



**ORS Research Design & Data Analysis Lab** Office of Research and Scholarship

## ANALYSIS PLATFORM



### University of Texas at Tyler

Get Software Learn MATLAB Teach with MATLAB What's New

MATLAB R2021b

### MATLAB Access for Everyone at

### University of Texas at Tyler

https://www.mathworks.com/academia/tah-portal/university-of-texas-at-tyler-1108545.html

## ANALYSIS PLATFORM

#### MathWorks<sup>®</sup> Salvatore\_Suici University of Texas at Tyler fx >>MLFeatures Classification Learner Learn MATLAB Teach with MATLAB Get Software What's New CLASSIFICATION LEARNING MATLAB Access for Everyone at Current Model University of Texas at Tyler Select a file to view detai

https://www.mathworks.com/academia/tah-portal/university-of-texas-at-tyler-1108545.html

### OUTLINE

### >INTRODUCTION

### DIFFERENT CLASSIFIERS

#### ►EXAMPLES

### OUTLINE

### >INTRODUCTION

### DIFFERENT CLASSIFIERS

#### ►EXAMPLES

## INTRODUCTION

>What is Machine Learning ?

 Machine Learning is a field of study that gives computers the ability to "learn" without being explicitly programmed

- Prediction
- Classification

## INTRODUCTION

>What is Machine Learning ?

 Machine Learning is a field of study that gives computers the ability to "learn" without being explicitly programmed

- Prediction
- Classification

### OUTLINE

### >INTRODUCTION

#### >DIFFERENT CLASSIFIERS

#### ►EXAMPLES

### >SUPERVISED LEARNING

>UNSUPERVISED LEARNING

SUPERVISED LEARNING (Classification / Prediction)

Provide training set with features and solutions

### >STANDARD MACHINE LEARNING

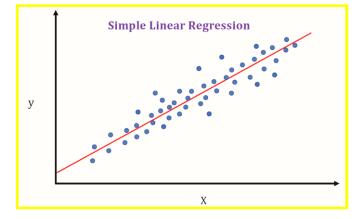
>ADVANCED MACHINE LEARNING

Based on Artificial Neural Networks (Deep Learning)

- ➤CLASSIFICATION
  - Logistic Regression
  - Support Vector Machine

- ➤CLASSIFICATION
  - Logistic Regression
  - Support Vector Machine

### Linear Regression

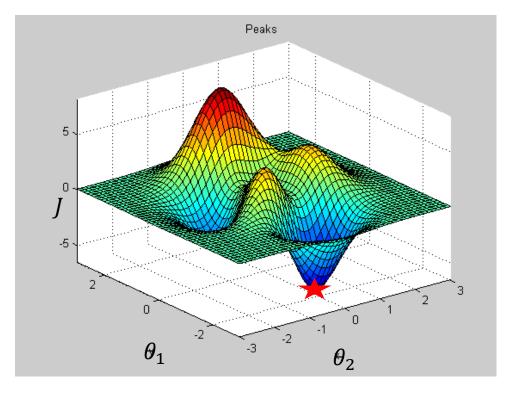

$$\hat{y}^i = \theta_0 + \theta_1 x_1^i + \theta_2 x_2^i + \cdots \dots + \theta_n x_n^i \qquad i = 1, 2, \dots, m$$

 $\hat{Y} = \Theta^T X$ 

- Gradient Descent by Louis Augustin Cauchy in 1847

Cost Function to Minimize

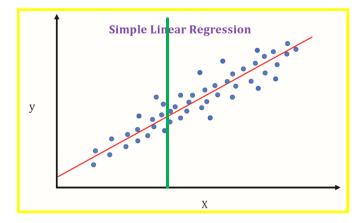
$$J = \left\langle \left( \hat{y}^{i} - y^{i} \right)^{2} \right\rangle = \left( \hat{Y} - Y \right)^{T} \left( \hat{Y} - Y \right) = \frac{1}{m} \sum_{i=1}^{m} (\theta^{T} X^{i} - y^{i})^{2}$$




https://medium.datadriveninvestor.com/machine-learning-101part-1-24835333d38a

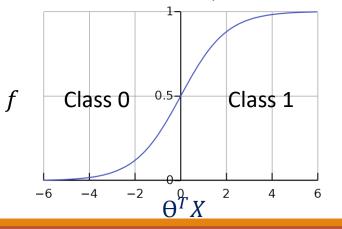
### Linear Regression

 $\Theta^{k+1} = \Theta^k - \gamma \nabla_{\Theta} J(\Theta)$ 


$$\nabla_{\Theta} J(\Theta) = \frac{2}{m} X^T (X\Theta - Y)$$



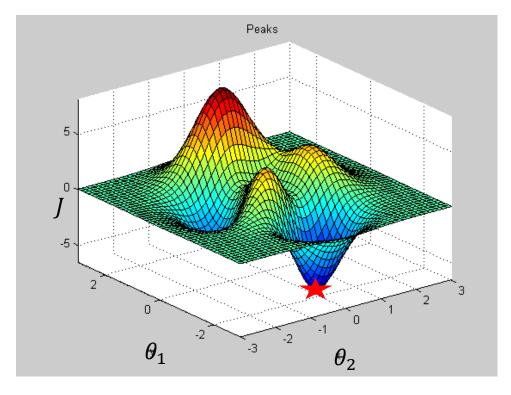
### Logistic Regression


Two class y = 1 or y = 0

$$\hat{p} = f(\Theta^T X) = \frac{1}{1 + e^{-\Theta^T X}}$$



https://medium.datadriveninvestor.com/machine-learning-101part-1-24835333d38a

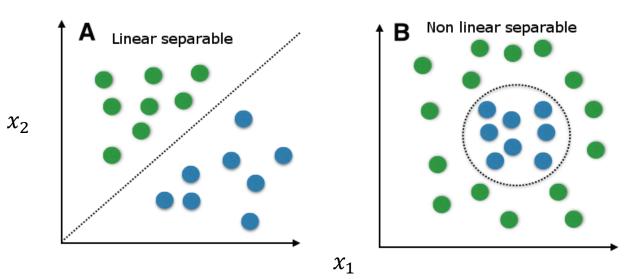

$$\hat{y} = 1 \ if \hat{p} < 0.5; \ \hat{y} = 0 \ if \hat{p} \ge 0.5$$
$$J = \frac{1}{m} \sum_{i=1}^{m} [y^i \log(\hat{p}^i) + (1 - y^i) \log(1 - \hat{p}^i)]$$



### Logistic Regression

 $\Theta^{k+1} = \Theta^k - \gamma \nabla_{\Theta} J(\Theta)$ 

$$\frac{\partial}{\partial \theta_{j}} J(\Theta) = \frac{1}{m} \sum_{i=1}^{m} (f(\Theta^{T} X^{i}) - y^{i}) x_{j}^{i}$$



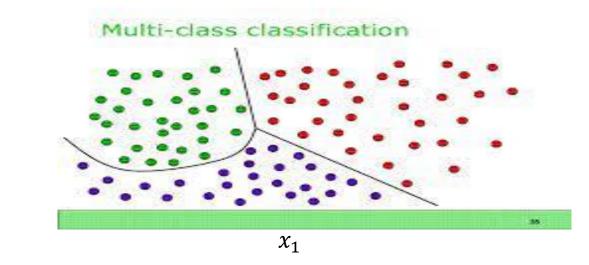

### Support Vector Machine

 $G(x_j, x_k) = \exp(-||x_j - x_k||^2)$ 

 $G(x_j, x_k) = (1 + x_j' x_k)^q$ , where q is in the set {2,3,...}.

 $f(X) = w^T X - b$ 




https://medium.com/@LSchultebraucks/introduction-to support-vector-machines-9f8161ae2fcb

SUPERVISED LEARNING (Classification / Prediction)

• Support Vector Machine (SVM)

Used for regression as well as classification

 $x_2$ 



https://www.mathworks.com/matlabcentral/fileexchange/62061-multi-class-svm

>SUPERVISED LEARNING (Classification )

- Logistic Regression
- Support Vector Machines
- k-Nearest Neighbors
- Decision Trees and Random Forests

#### Home Value Classification: 9 features to classify high vs low medianHouseValue

longitude: A measure of how far west a house is; a higher value is farther west

latitude: A measure of how far north a house is; a higher value is farther north

housingMedianAge: Median age of a house within a block; a lower number is a newer building

totalRooms: Total number of rooms within a block

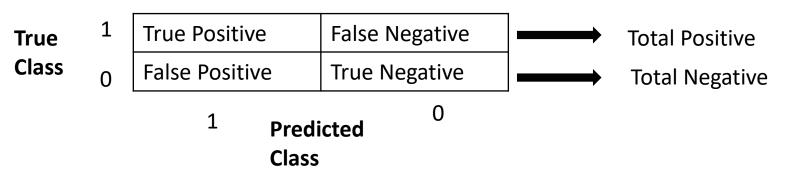
totalBedrooms: Total number of bedrooms within a block

population: Total number of people residing within a block

households: Total number of households, a group of people residing within a home unit, for a block

medianIncome: Median income for households within a block of houses (measured in tens of thousands of US Dollars)

medianHouseValue: Median house value for households within a block (measured in US Dollars)


oceanProximity: Location of the house w.r.t ocean/sea

Demo with N=5000 70% Training Data 30% Test Data Models Trained: Logistic Regression SVM

https://www.kaggle.com/camnugent/california-housing-prices

Prediction of House Price Classification Problem

#### **Confusion Matrix**



True Positive Rate = True Positive / Total Positive

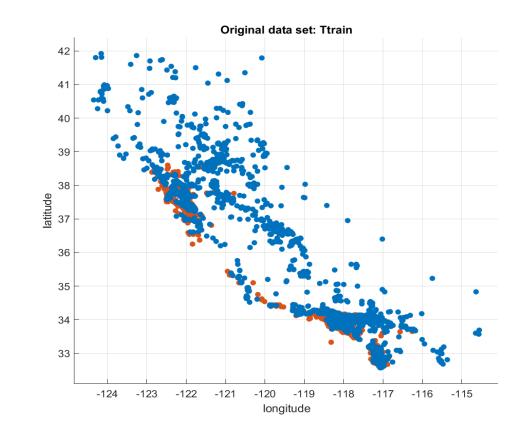
True Negative Rate = True Negative / Total Negative = 1 – False Positive Rate

Validation

#### >DATA IMPORT & CLASSIFICATION LEARNER INITIALIZATION

#### New Session from Arguments

| ata set           |               |       |   |
|-------------------|---------------|-------|---|
| Data Set Variable |               |       |   |
| Ttrain            | 3500x11 table |       | ▼ |
| Response          |               |       |   |
| hi_lo_label       | double (      | <br>1 | ▼ |


#### Predictors

|   | Name               | Туре   | Range         |   |
|---|--------------------|--------|---------------|---|
| ✓ | longitude          | double | -124.35114.56 | - |
| ✓ | latitude           | double | 32.57 41.92   |   |
| ✓ | housing_median_age | double | 2 52          |   |
| ✓ | total_rooms        | double | 25 39320      |   |
| ✓ | total_bedrooms     | double | 3 6210        |   |
| ✓ | population         | double | 13 16305      |   |
|   | households         | doublo | 5 5250        | • |

#### Add All Remove All

#### How to prepare data

A Response variable is numeric. Distinct values will be interpreted as class labels.



- 0 ×

#### Cross-Validation

Protects against overfitting by partitioning the data set into folds and estimating accuracy on each fold.

| Cross-validation folds: |   | ÷ |
|-------------------------|---|---|
|                         | - |   |

#### Holdout Validation

Recommended for large data sets.

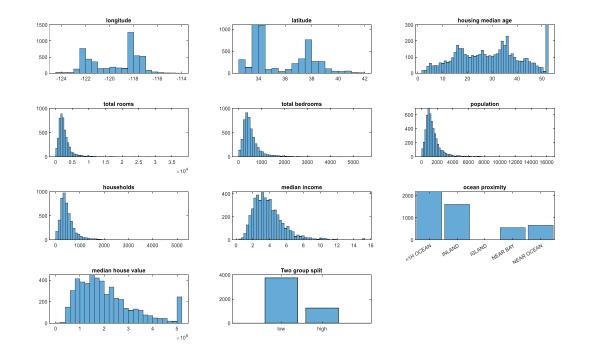
out: 25 🌲

#### Resubstitution Validation

No protection against overfitting. The app uses all the data for both training and validation.

Read about validation



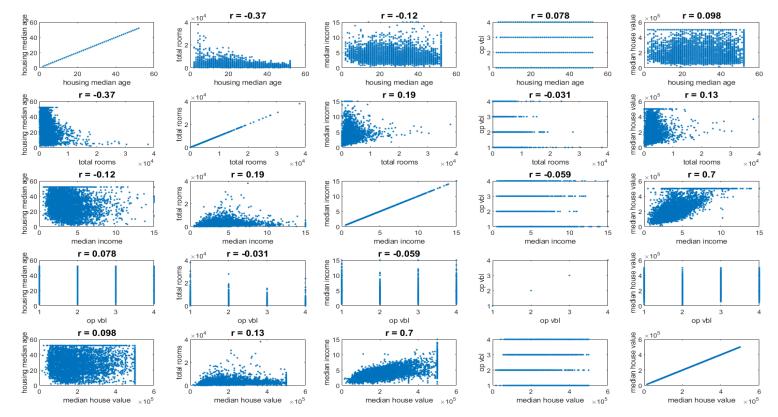

>DATA IMPORT & CLASSIFICATION LEARNER INITIALIZATION

classificationLearner(Ttrain, 'hi\_lo\_label');

Demo Learner App in MATLAB - logistic regression and linear SVM

## **SECTION 2: Raw Data Analysis**

Visualize the data, Summarize variables, data cleaning, pre-processing if needed




207 Missing values, replace with median values

ocean\_proximity: 20636×1 categorical Values: <1H OCEAN 9135 INLAND 6550 ISLAND 5 NEAR BAY 2289 NEAR OCEAN 2657

## **SECTION 3: Correlation Analysis**

FIND VARIABLE CORRELATIONS TO EACH OTHER AND THE MEDIAN HOUSE VALUE

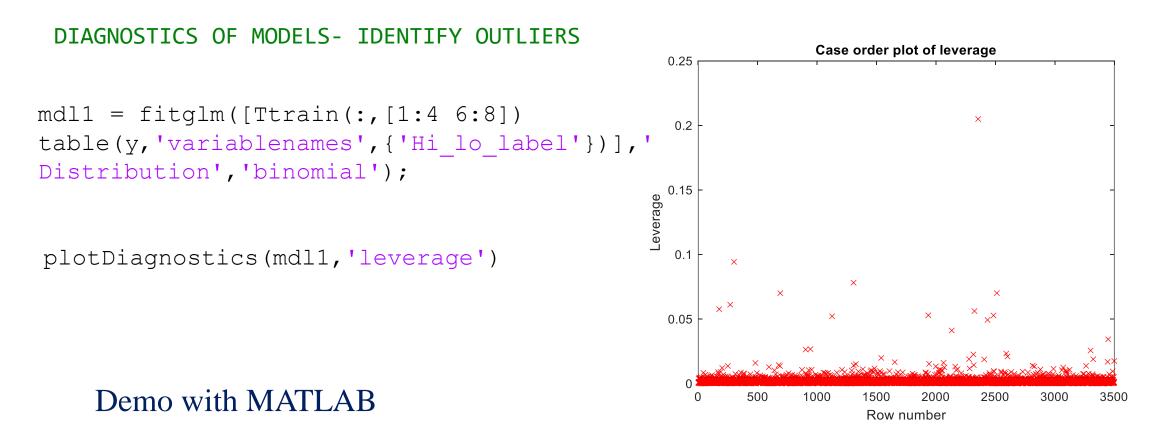


[R,pp] = corr(table2array(T1(:,select vars)));

### **SECTION 4: Logistic Regression**

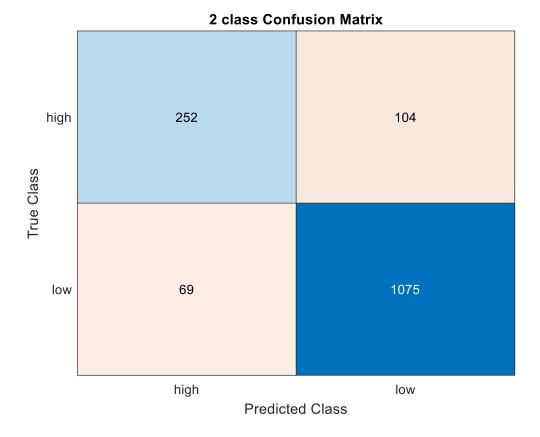
#### SPLIT INTO TRAINING AND TEST DATA AND FIT LOGISTIC REGRESSION MODEL

#### Estimated Coefficients:


|                            | Estimate   | SE         | tStat    | pValue     |
|----------------------------|------------|------------|----------|------------|
| (Intercept)                | -154.19    | 14.421     | -10.692  | 1.1065e-26 |
| longitude                  | -1.7683    | 0.17448    | -10.135  | 3.8752e-24 |
| latitude                   | -1.8133    | 0.18885    | -9.6018  | 7.8546e-22 |
| housing_median_age         | 0.044239   | 0.0051484  | 8.5928   | 8.4901e-18 |
| total_rooms                | 0.0003444  | 9.7387e-05 | 3.5364   | 0.00040561 |
| total_bedrooms             | 0.00080298 | 0.00084259 | 0.95299  | 0.3406     |
| population                 | -0.0023529 | 0.00020995 | -11.207  | 3.7737e-29 |
| households                 | 0.0039573  | 0.00094559 | 4.185    | 2.8517e-05 |
| median_income              | 1.0172     | 0.053904   | 18.87    | 2.0101e-79 |
| ocean_proximity_INLAND     | -0.053285  | 0.24937    | -0.21368 | 0.8308     |
| ocean_proximity_ISLAND     | 0          | 0          | NaN      | NaN        |
| ocean proximity NEAR BAY   | -0.10616   | 0.19861    | -0.53449 | 0.593      |
| ocean_proximity_NEAR OCEAN | 0.11076    | 0.15948    | 0.6945   | 0.48737    |

```
mdl = fitglm([Ttrain(:,1:9)
table(y)],'Distribution','binomial');
```

3500 observations, 3488 error degrees of freedom Dispersion: 1 Chi^2-statistic vs. constant model: 1.83e+03, p-value = 0


#### Remove Insignificant features

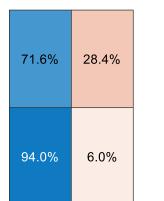
### **SECTION 5: Outliers**



### SECTION 6: Classification (Clean Data)

#### TEST MODEL FOR TWO CLASS CLASSIFICATION (Logistic Regression)





Test Data N = 1500 (30% of 5000)

Missing Values Insignificant Features Outliers

### **SECTION 7: SVM Classification**

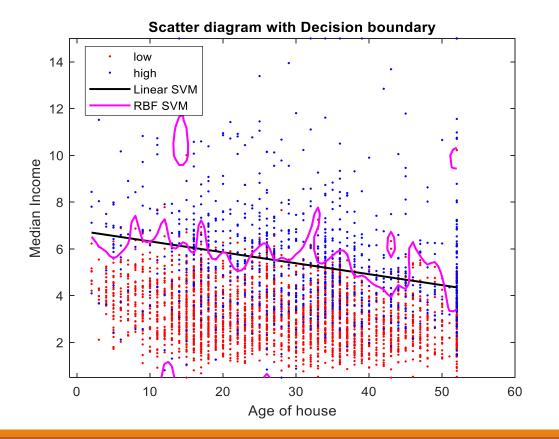
REGULARIZATION OF VARIABLES DONE AUTOMATICALLY, NO NEED TO CHOOSE FEATURES SEPARATELY AS WAS DONE EARLIER FOR LOGISTIC REGRESSION





Test Data N = 1500 (30% of 5000)

Linear SVM


78.7%91.4%21.3%8.6%highlow<br/>Predicted Class

SVMModel = fitcsvm(Ttrain(:,1:9),y,'standardize',true);

Demo Logistic Regression and SVM binary classification with cleaned up data - PYTHON

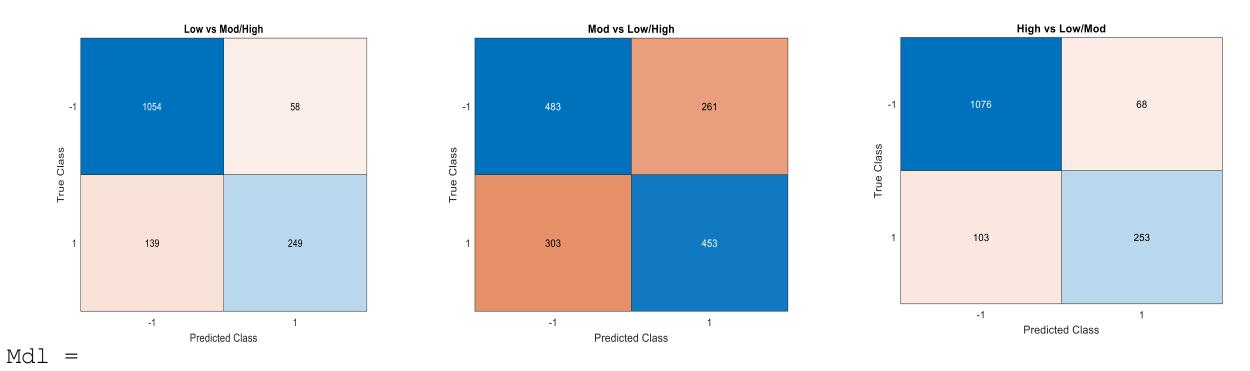
### **SECTION 8: SVM Classification**

#### LINEAR vs RADIAL BASIS FUNCTION (RBF) KERNEL



fitcsvm([x1 x2],y1);

fitcsvm([x1 x2],y1,'KernelFunction','rbf');


x1: Age of House
X2: Median Income

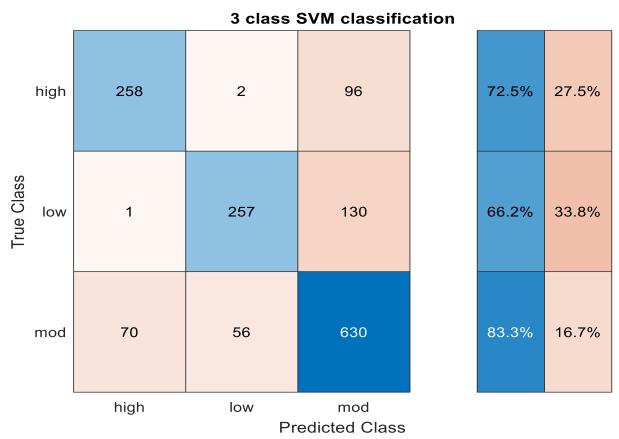
## Demo SVM decision boundaries with MATLAB

### SECTION 9: Multiclassification (SVM)

#### ONE CLASS vs REST

#### Also perform one to one class




### SECTION 10: Multiclassification (SVM)

#### LOW vs MOD vs HIGH CLASS

```
Mdlp =
fitcecoc(Ttrain(:,1:8),y,'Learner
s',t,'FitPosterior',true,...
```

```
'ClassNames', {'low', 'mod', 'high'}
,...
'Verbose',2);
```

Demo SVM Multi-class classification with MATLAB



## CONCLUSION

Classification divides the data into different groups

>Look at the raw data and understand features in relation to class designation

>Several codes are available to perform classification





# THANK YOU

SBIR: RAE (Realize, Analyze, Engage) - A digital biomarker based detection and intervention system for stress and carvings during recovery from substance abuse disorders. *PIs: M. Reinhardt, S. Carreiro, P. Indic* 

STARs Award

The University of Texas System *P. Indic (PI, UT Tyler)* 

#### **ORS Research Design & Data Analysis Lab**

#### Office of Research and Scholarship



Department of Veterans Affairs

Design of a wearable sensor system and associated algorithm to track suicidal ideation from movement variability and develop a novel objective marker of suicidal ideation and behavior risk in veterans. Clinical Science Research and Development Grant (approved for funding), **P. Indic (site PI, UT-Tyler)** 

E.G. Smith (Project PI, VA)

P. Salvatore (Investigator, Harvard University)



Design of a wearable biosensor sensor system with wireless network for the remote detection of life threatening events in neonates.

National Science Foundation Smart & Connected Health Grant

P. Indic (Lead PI, UT-Tyler)

D. Paydarfar (Co PI, UT-Austin)

H. Wang (Co PI, UMass Dartmouth)

Y. Kim (Co PI, UMass Dartmouth)



Pre-Vent

National Institute Of Health Grant *P. Indic (Analytical Core PI, UT-Tyler) N. Ambal (PI, Univ. of Alabama, Birmingham)* 

ViSiOn

P. Indic (site PI, UT-Tyler) P. Ramanand (Co-I, UT Tyler N. Ambal, (PI, Univ. of Alabama, Birmingham)

# QUESTIONS