

Deep Dive into Deep Learning

PREMANANDA INDIC, PH.D.

DEPARTMENT OF ELECTRICAL ENGINEERING

The University of Texas at **TEXER** Center for Health Informatics & Analytics

ORS Research Design & Data Analysis Lab Office of Research and Scholarship

ANALYSIS PLATFORM

University of Texas at Tyler

Get Software Learn MATLAB Teach with MATLAB What's New

MATLAB R2021b

MATLAB Access for Everyone at

University of Texas at Tyler

https://www.mathworks.com/academia/tah-portal/university-of-texas-at-tyler-1108545.html

ANALYSIS PLATFORM

📣 MathWorks®

University of Texas at Tyler

Get Software Learn MATLAB Teach with MATLAB What's New

MATLAB Access for Everyone at

University of Texas at Tyler

https://www.mathworks.com/academia/tah-portal/university-of-texas-at-tyler-1108545.html

>INTRODUCTION

DIFFERENT DEEP LEARNING APPROACHES WITH EXAMPLES

► QUESTIONS

>INTRODUCTION

DIFFERENT DEEP LEARNING APPROACHES WITH EXAMPLES

► QUESTIONS

> What is Machine Learning ?

Machine Learning is a field of study that gives computers the ability to "learn" without being explicitly programmed

- Prediction
- Classification

Samuel AL, IBM J. Research & Development, 1959, vol. 3 (3), 210-229

> What is **Deep** Learning?

- Deep learning is a branch of machine learning that teaches computers to do what comes naturally to humans: learn from experience.
- Deep learning uses deep neural network with several layers to learn.

TRANDITIONAL MACHINE LEARNING

> What is **Deep** Learning?

- Deep learning describes models that utilize multiple layers to represent latent features at a higher and more abstract level
- The representations are learned from data rather than constructed by human engineers

https://www.ibm.com/cloud/learn/neural-networks

- Inspiration from biological Neuron
- All or none
- Frequency rather amplitude helps in information processing

http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/imgbio/actpot4.gif https://pmgbiology.files.wordpress.com/2015/02/5d3d66ef622165ae607b3c02f6e603c524e ececf.gif

> From biological neural to artificial neural network

How Artificial Neural Network Works?

Activation Functions

https://medium.com/@shrutijadon/survey-on-activation-functions-for-deep-learning-9689331ba092

 $\begin{aligned} & \searrow \text{Gradient Descent} \\ \hat{y}^i &= \theta_0 + \theta_1 x_1^i + \theta_2 x_2^i + \dots \dots + \theta_n x_n^i \qquad i = 1, 2, \dots, m \\ & J = \left\langle \left(\hat{y}^i - y^i \right)^2 \right\rangle = \left(\hat{Y} - Y \right)^T (\hat{Y} - Y) = \frac{1}{m} \sum_{i=1}^m (\theta^T X^i - y^i)^2 \\ & \Theta^{k+1} = \Theta^k - \gamma \nabla_{\Theta} J(\Theta) \end{aligned}$ (Standard Machine Learning)

> Application of Deep Learning

Cruise Assistance

http://dafne%20van%20kuppevelt/ https://www.semanticscholar.org/paper/Human-like-Autonomous-Vehicle-Speed-Control-by-Deep-Zhang-Sun/9ed56cf584eb66bdf576fcc58e84fecb2f51f547

Medical Imaging

>INTRODUCTION

> DIFFERENT DEEP LEARNING APPROACHES WITH EXAMPLES

► QUESTIONS

> DIFFERENT DEEP LEARNING APPROACHES WITH EXAMPLES

Convolutional Neural Network Long Short-Term Memory

> DIFFERENT DEEP LEARNING APPROACHES WITH EXAMPLES

Convolutional Neural Network Long Short-Term Memory

Convolutional Neural Network (Finite Impulse Response)

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Convolutional Neural Network (Pretrained Network)

GoogLeNet, a pretrained deep convolutional neural network (CNN or ConvNet)

Example 1: Simple Image Classification using GoogleNET (using App)

Example 2: Classify Text Data Using Convolutional Neural Network

Description		Category	Urgency	Resolution	Cost
{'Items are occasionally getting stuck in the scanner spools.'	}	{'Mechanical Failure'}	{'Medium'}	{ 'Readjust Machine' }	45
{'Loud rattling and banging sounds are coming from assembler pistons.'	'}	{'Mechanical Failure'}	{'Medium'}	{'Readjust Machine' }	35
{'There are cuts to the power when starting the plant.'	}	{'Electronic Failure'}	{'High' }	{'Full Replacement' }	16200
{'Fried capacitors in the assembler.'	}	{'Electronic Failure'}	{'High' }	{'Replace Components'}	352
{'Mixer tripped the fuses.'	}	{'Electronic Failure'}	{'Low' }	{'Add to Watch List' }	55
{'Burst pipe in the constructing agent is spraying coolant.'	}	{'Leak' }	{'High' }	{'Replace Components'}	371
{'A fuse is blown in the mixer.'	}	{'Electronic Failure'}	{'Low' }	{'Replace Components'}	441
{'Things continue to tumble off of the belt.'	}	{'Mechanical Failure'}	{'Low' }	{'Readjust Machine' }	38

Example 2: Classify Text Data Using Convolutional Neural Network

Example 2: Classify Text Data Using Convolutional Neural Network

Example 3: Regression model using CNN to predict the angles of rotation of handwritten digits.

Example 3: Regression model using CNN to predict the angles of rotation of handwritten digits.

Example 3: Regression model using CNN to predict the angles of rotation of handwritten digits.

Example 3: Regression model using CNN to predict the angles of rotation of handwritten digits.

> DIFFERENT DEEP LEARNING APPROACHES WITH EXAMPLES

Convolutional Neural Network Long Short-Term Memory

Long Short-Term Memory (LSTM) Network (Infinite Impulse Response)

Special category of network that are suitable for learning long-term dependencies.

https://towardsdatascience.com/machine-learning-recurrentneural-networks-and-long-short-term-memory-lstm-pythonkeras-example-86001ceaaebc

Example 4: LSTM Regression Network for Time Series Forecasting Using Deep

Network Designer (App) Monthly Cases of Chickenpox Cases Month

Example 4: LSTM Regression Network for Time Series Forecasting Using Deep

Network Designer (App)

承 Training Options	_	
SOLVER		
Solver	adar	n 🔻
InitialLearnRate		0.005 🚖
BASIC		
ValidationFrequency		50 🌲
MaxEpochs		500 🌲
MiniBatchSize		128 🌲
ExecutionEnvironment	auto	•
SEQUENCE		
SequenceLength	long	est 🔻
SequencePaddingValue		0
SequencePaddingDirection	right	•
ADVANCED		
L2Regularization		0.0001 🖨
GradientThresholdMethod	l2no	rm 🔻
GradientThreshold		1 🖨
ValidationPatience		Inf 🚖

Example 4: LSTM Regression Network for Time Series Forecasting Using Deep Network Designer (App)

CONCLUSION

>Deep Learning Networks can be used for regression and classification

≻Forecasting or Prediction is a salient feature of ANN

≻Need large amount of data to train the models

THANK YOU

SBIR: RAE (Realize, Analyze, Engage) - A digital biomarker based detection and intervention system for stress and carvings during recovery from substance abuse disorders. *PIs: M. Reinhardt, S. Carreiro, P. Indic* STARs Award

The University of Texas System *P. Indic (PI, UT Tyler)*

ORS Research Design & Data Analysis Lab

Office of Research and Scholarship

Department of Veterans Affairs

Design of a wearable sensor system and associated algorithm to track suicidal ideation from movement variability and develop a novel objective marker of suicidal ideation and behavior risk in veterans. Clinical Science Research and Development Grant (approved for funding), **P. Indic (site PI, UT-Tyler)**

E.G. Smith (Project PI, VA)

P. Salvatore (Investigator, Harvard University)

Design of a wearable biosensor sensor system with wireless network for the remote detection of life threatening events in neonates.

National Science Foundation Smart & Connected Health Grant *P. Indic (Lead PI, UT-Tyler) D. Paydarfar (Co PI, UT-Austin) H. Wang (Co PI, UMass Dartmouth)*

Y. Kim (Co PI, UMass Dartmouth)

Pre-Vent

National Institute Of Health Grant P. Indic (Analytical Core PI, UT-Tyler) N. Ambal (PI, Univ. of Alabama, Birmingham)

ViSiOn

P. Indic (site PI, UT-Tyler) P. Ramanand (Co-I, UT Tyler N. Ambal, (PI, Univ. of Alabama, Birmingham)

QUESTIONS