

MACHINE LEARNING: REGRESSION

PREMANANDA INDIC, PH.D. DEPARTMENT OF ELECTRICAL ENGINEERING

ORS Research Design & Data Analysis Lab Office of Research and Scholarship

ANALYSIS PLATFORM

University of Texas at Tyler

Get Software Learn MATLAB Teach with MATLAB What's New

MATLAB Access for Everyone at

University of Texas at Tyler

https://www.mathworks.com/academia/tah-portal/university-of-texas-at-tyler-1108545.html

ANALYSIS PLATFORM

MathWorks® University of Texas at Tyler Command Wind Workspac fx >>MLFeatures A Classification Learner X Learn MATLAB Teach with MATLAB What's New Get Software CLASSIFICATION LEARNE MATLAB Access for Everyone at Current Model University of Texas at Tyler

https://www.mathworks.com/academia/tah-portal/university-of-texas-at-tyler-1108545.html

OUTLINE

►INTRODUCTION

>DIFFERENT REGRESSION APPROACHES

►EXAMPLES

OUTLINE

≻INTRODUCTION

DIFFERENT REGRESSION APPROACHES

►EXAMPLES

INTRODUCTION

➤What is Machine Learning ?

 Machine Learning is a field of study that gives computers the ability to "learn" without being explicitly programmed

- Prediction
- Classification

INTRODUCTION

➤What is Machine Learning ?

 Machine Learning is a field of study that gives computers the ability to "learn" without being explicitly programmed

- Prediction (Regression)
- Classification

OUTLINE

►INTRODUCTION

>DIFFERENT REGRESSION APPROACHES

►EXAMPLES

>SUPERVISED LEARNING

>UNSUPERVISED LEARNING

SUPERVISED LEARNING (Classification / Prediction)

Provide training set with features and solutions

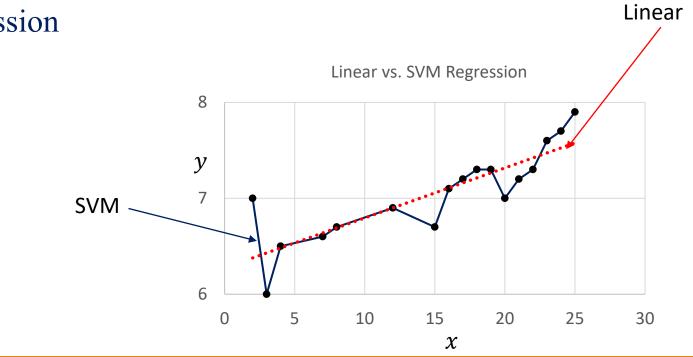
>STANDARD MACHINE LEARNING

>ADVANCED MACHINE LEARNING

Based on Artificial Neural Networks (Deep Learning)

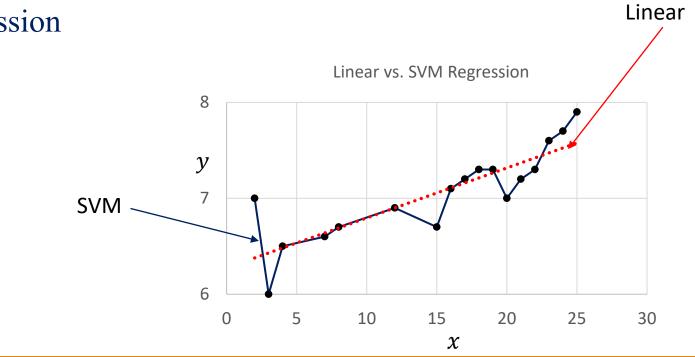
➢ REGRESSION

- Linear Regression
- Support Vector Regression



➢ REGRESSION

- Linear Regression
- Support Vector Regression



Linear Regression

Given *m* outcomes $y^{(i)}$ where i = 1, 2, ..., m with each outcome depends on *n* features x_j where j = 1, 2, ..., n. Find the best estimate of y^i as \hat{y}^i using the *n* features with appropriate parameters θ_j such that $J = \langle (\hat{y}^{(i)} - y^{(i)})^2 \rangle$

$$\hat{y}^{(i)} = \theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \dots \dots + \theta_n x_n^{(i)}$$

Linear Regression

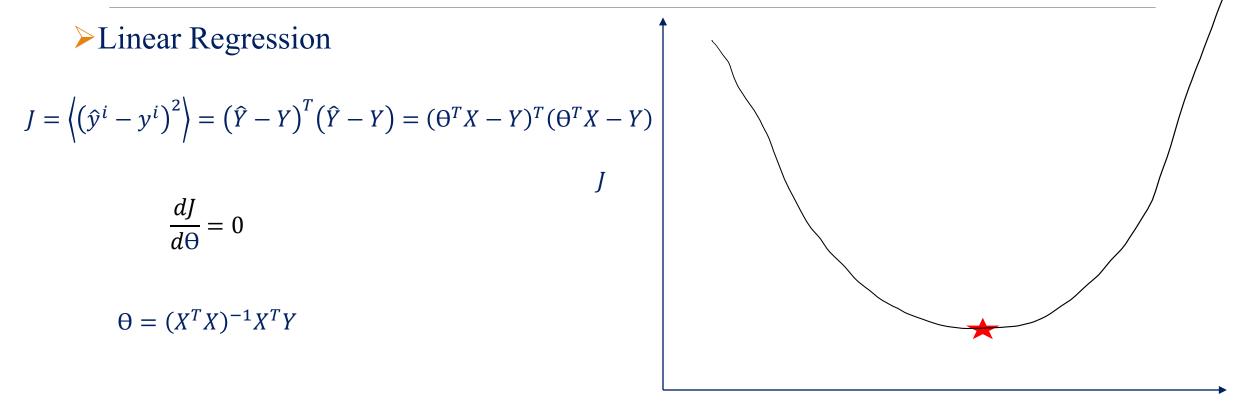
$$\hat{y}^{(i)} = \theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \dots + \theta_n x_n^{(i)}$$

$$\Theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \cdots \\ \vdots \\ \theta_n \end{bmatrix} \quad X = \begin{bmatrix} 1 & 1 & 1 & \cdots & \cdots & 1 \\ x_1^{(1)} & x_1^{(2)} & x_1^{(3)} & \cdots & x_1^{(m)} \\ x_2^{(1)} & x_2^{(2)} & x_2^{(3)} & \cdots & x_2^{(m)} \\ \vdots & \vdots & \vdots & \cdots & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_n^{(1)} & x_n^{(2)} & x_n^{(3)} & \cdots & x_n^{(m)} \end{bmatrix}$$

Cost Function to Minimize

$$J = \left\langle \left(\hat{y}^i - y^i \right)^2 \right\rangle = (\hat{Y} - Y)^T (\hat{Y} - Y)$$

 $\hat{Y} = \Theta^T X$



Linear Regression

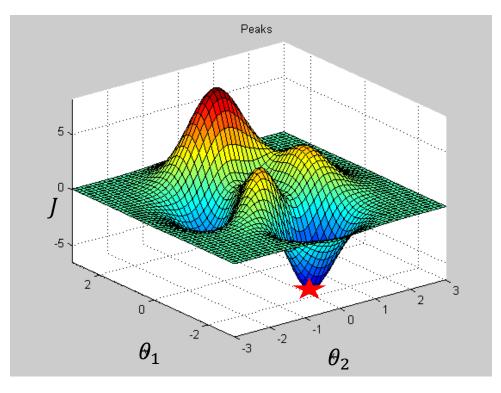
$$\hat{y}^i = \theta_0 + \theta_1 x_1^i + \theta_2 x_2^i + \cdots \dots + \theta_n x_n^i$$

 $\hat{Y} = \Theta^T X$

- Gradient Descent by Louis Augustin Cauchy in 1847

Cost Function to Minimize

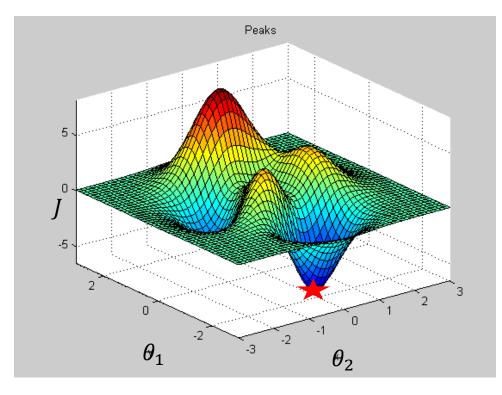
$$J = \left\langle \left(\hat{y}^i - y^i \right)^2 \right\rangle = (\hat{Y} - Y)^T (\hat{Y} - Y)$$



Linear Regression

 $\Theta^{k+1} = \Theta^k - \gamma \nabla_{\Theta} J(\Theta)$

$$\nabla_{\Theta} J(\Theta) = \frac{2}{m} X^T (X\Theta - Y)$$



Polynomial Regression

Given *m* outcomes $y^{(i)}$ where i = 1, 2, ..., m with each outcome depends on *n* features x_j where j = 1, 2, ..., n. Find the best estimate of y^i as \hat{y}^i using the *n* features with appropriate parameters θ_j such that $J = \langle (\hat{y}^{(i)} - y^{(i)})^2 \rangle$

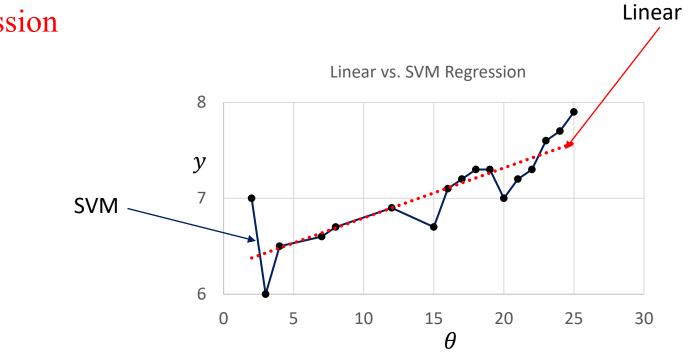
$$\hat{y}^{(i)} = \theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_1^{2(i)} + \dots \dots + \theta_n x_1^{n(i)}$$

Polynomial Regression

$$\hat{y}^{(i)} = \theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_1^{2(i)} + \dots + \theta_n x_1^{n(i)}$$

➢ REGRESSION

- Linear Regression
- Support Vector Regression



Support Vector Regression

 $-\epsilon < y - f(x) < \epsilon$

 $f(x) = \theta_0 + \theta x$ (Linear Regression)

$$f(x) = \theta_0 + \sum_{i=1}^m G(x^i, x)$$

 $G(x^i, x) = x^i \cdot x$ (Linear SVR)

$$G(x_j, x_k) = \exp(-||x_j - x_k||^2)$$

 $G(x_j, x_k) = (1 + x_j' x_k)^q$, where q is in the set {2,3,...}.

Home Value Prediction (App Based): 9 features to predict medianHouseValue (N=20640)

longitude: A measure of how far west a house is; a higher value is farther west

latitude: A measure of how far north a house is; a higher value is farther north

housingMedianAge: Median age of a house within a block; a lower number is a newer building

totalRooms: Total number of rooms within a block

totalBedrooms: Total number of bedrooms within a block

population: Total number of people residing within a block

households: Total number of households, a group of people residing within a home unit, for a block

medianIncome: Median income for households within a block of houses (measured in tens of thousands of US Dollars)

medianHouseValue: Median house value for households within a block (measured in US Dollars)

oceanProximity: Location of the house w.r.t ocean/sea

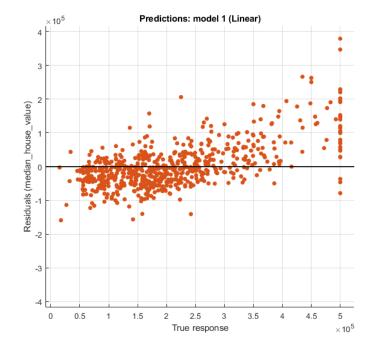
https://www.kaggle.com/camnugent/california-housing-prices

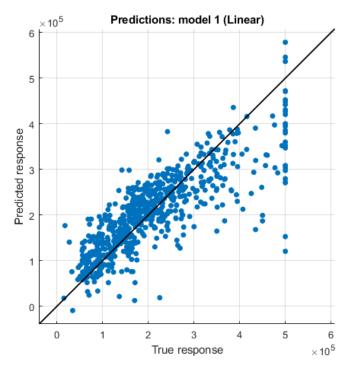
Demo with N=5000 70% Training Data 30% Test Data Models Trained: Linear Regression SVM

Home Value Prediction (App Based): 9 features to predict medianHouseValue (N=5000)

Model Type	Validation (10 fold) RMSE	R-squared	Test RMSE	Test R-squared
Linear Regression (using App)	69010	0.64	65501	0.67
Linear SVM (using App)	70382	0.64	66858	0.66

Home Value Prediction (App Based): 9 features to predict medianHouseValue (N=5000)





Home Value Prediction (Realistic Approach): 9 features to predict medianHouseValue (N=5000)

1. Visualize the data

2. Identify the features (find correlations between variables)

3. Preprocess the data (missing values, outliers)

4. Train the Model

5. Select the best performance model

Home Value Prediction (Realistic Approach): 9 features to predict medianHouseValue (N=5000)

Model Type	Validation RMSE	Test RMSE
Lin regression	70071	65501
Lin. Regression – fewer variables	69031	65357
SVM —linear kernel	116370	116130
SVM –Gaussian Kernel	60099	57708

LASSO RGRESSION

Linear Regression

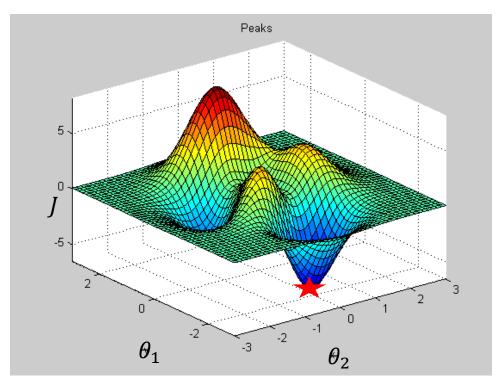
$$\hat{y}^i = \theta_0 + \theta_1 x_1^i + \theta_2 x_2^i + \cdots \dots + \theta_n x_n^i$$

 $\hat{Y} = \Theta^T X$

- Gradient Descent by Louis Augustin Cauchy in 1847

Cost Function to Minimize

$$J = \left\langle \left(\hat{y}^i - y^i \right)^2 \right\rangle = (\hat{Y} - Y)^T (\hat{Y} - Y)$$



LASSO RGRESSION

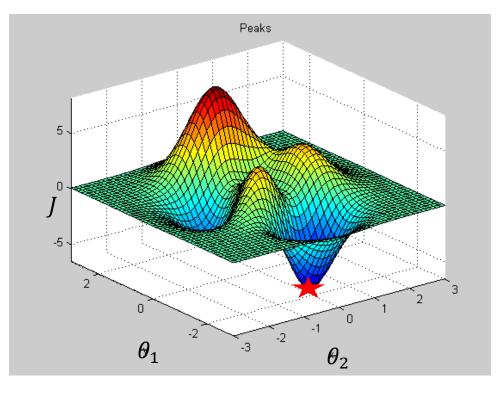
Linear Regression with Lasso

 $\hat{y}^i = \theta_0 + \theta_1 x_1^i + \theta_2 x_2^i + \cdots \dots + \theta_n x_n^i$

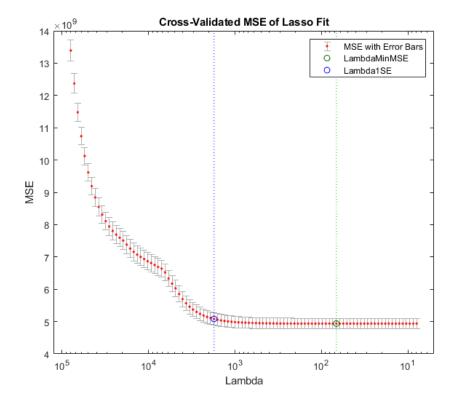
 $\hat{Y} = \Theta^T X$

Cost Function to Minimize

$$J = \left\langle \left(\hat{y}^{i} - y^{i} \right)^{2} \right\rangle = \left(\hat{Y} - Y \right)^{T} \left(\hat{Y} - Y \right) + \lambda \sum_{i=1}^{n} |\theta_{i}|$$



Home Value Prediction (Lasso Regression): 9 features to predict medianHouseValue (N=5000)



$$J = \left\langle \left(\hat{y}^{i} - y^{i} \right)^{2} \right\rangle = \left(\hat{Y} - Y \right)^{T} \left(\hat{Y} - Y \right) + \lambda \sum_{j=1}^{n} |\theta_{j}|$$

Lambda

Lasso removes the 'total_rooms'and 'Ocean Proximity_inland' variables as least important.

RMSE on test data with 7 features = 66443

CONCLUSION

>Regression provides continuous prediction of an outcome with selected features

>Understanding of features in relation to outcome is important

>Several codes are available to perform regression analysis

THANK YOU

SBIR: RAE (Realize, Analyze, Engage) - A digital biomarker based detection and intervention system for stress and carvings during recovery from substance abuse disorders. *PIs: M. Reinhardt, S. Carreiro, P. Indic*

STARs Award

The University of Texas System *P. Indic (PI, UT Tyler)*

ORS Research Design & Data Analysis Lab

Office of Research and Scholarship

Department of Veterans Affairs

Design of a wearable sensor system and associated algorithm to track suicidal ideation from movement variability and develop a novel objective marker of suicidal ideation and behavior risk in veterans. Clinical Science Research and Development Grant (approved for funding),

P. Indic (site PI, UT-Tyler)

E.G. Smith (Project PI, VA)

P. Salvatore (Investigator, Harvard University)

Design of a wearable biosensor sensor system with wireless network for the remote detection of life threatening events in neonates.

National Science Foundation Smart & Connected Health Grant *P. Indic (Lead PI, UT-Tyler)*

D. Paydarfar (Co PI, UT-Austin)

H. Wang (Co PI, UMass Dartmouth)

Y. Kim (Co PI, UMass Dartmouth)

Pre-Vent

National Institute Of Health Grant P. Indic (Analytical Core PI, UT-Tyler) N. Ambal (PI, Univ. of Alabama, Birmingham)

ViSiOn

P. Indic (site PI, UT-Tyler) P. Ramanand (Co-I, UT Tyler N. Ambal, (PI, Univ. of Alabama, Birmingham)

QUESTIONS