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WORKSHOP SCHEDULE

»WEEK1: DATAANALYTICS

»WEEK?2: FEATURE EXTRACTION

»WEEK3: MACHINE LEARNING

Statistical or
Machine Learning
Models

i Feature Extraction Feature Selection ‘
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HYPOTHESIS

Scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a

narrow set of phenomena observed in the natural world. The two primary features of a scientific
hypothesis are falsifiability and testability

Source: https://www.britannica.com/science/scientific-hypothesis



FEATURE EXTRACTION

» Feature extraction Is the process of converting raw data into useful information for
machine learning algorithms to predict or classify
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FEATURE EXTRACTION

»Avoid too many features (computational resources and overfitting)

G Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.81e+08(+/- 5.42e+08)
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https://datascience.foundation/sciencewhitepaper/underfitting-and-overfitting-in-machine-learning



FEATURE EXTRACTION

» Statistical Features

(Mean, Standard Deviation, Mode, Skewness, Kurtosis)

u — Mean (Mode and Median)
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https://sphweb.bumc.bu.edu/otlt/MPH-Modules/PH717-QuantCore/PH717-Module6-RandomError/PH717-Module6-RandomError5.html



Exercise 1

Check whether the given two data sets have same features
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Exercise 1

Check whether the given two data sets have same features
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Exercise 1
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Exercise 1

Stimon Stimoff
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Exercise 1

Sirien Stimoff
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Signal Processing ‘ Machine Learning ‘ Evaluation &

Prediction

Indic P, Paydarfar D, Barbieri R. IEEE Trans. Biomed. Eng 2013, 60(10):2858-66
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BIOMEDICAL DATA

»LINEAR VS NONLINEAR

»>DETERMINISTIC VS STOCHASTIC

»STATIONARY VS NONSTATIONARY

Biomedical data are nonlinear, nonstationary and deterministic / stochastic in nature

Analytical tools are applicable only for linear, deterministic/stochastic and stationary



Exercise 2

Sliding Window Method: A few number of files and only one channel
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Exercise 2

Sliding Window Method: A few number of files and only one channel
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Exercise 3

Sliding Window Method: A few number of files and multiple channels in each file




Exercise 4

Sliding Window Method: Several number of files in a folder




PREPROCESSING

»IDENTIFY OUTLIERS

»IDENTIFY NOISE
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FEATURE EXTRACTION

» Statistical Features
(Mean, Standard Deviation, Mode, Skewness, Kurtosis)

»Spectral Features (linear)
(Frequency (Rate), Amplitude, Phase, Coherence, Spectrum Entropy)

»Nonlinear Features
(Detrended Fluctuation Coefficient, Multiscale Entropy, Mutual Information )



FEATURE EXTRACTION

» Statistical Features
(Mean, Standard Deviation, Mode, Skewness, Kurtosis)

MATLAB functions:
mean, sd, mode, skew, kurt

Works on two dimension arrays



FEATURE EXTRACTION

» Spectral Features (linear)

(Frequency (Rate), Amplitude, Phase, Coherence, Spectrum Entropy)

Transformation of data in time to a new variable (example: Fourier Transform)

https://commons.wikimedia.org/wiki/File:Simple_harmonic_motion_animation_2.gif




FEATURE EXTRACTION

»Nonlinear Features

(Detrended Fluctuation Coefficient, Multiscale Entropy, Mutual Information )

-Complicated and may be useful




HYPOTHESIS

Scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a

narrow set of phenomena observed in the natural world. The two primary features of a scientific
hypothesis are falsifiability and testability

Whatever features you select, and whatever conclusion you reach, always think, so what ?

Source: https://www.britannica.com/science/scientific-hypothesis



FEATURE EXTRACTION

Statistical Models are for inference (Linear Regression, Logistic Regression,........ )

Machine Learning Models are for classification / prediction (Linear Regression,

Support Vector Machine...... )

Data ‘

Statistical or
Machine Learning

Preprocessing
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FEATURE EXTRACTION

Statistical Models are for inference (Linear Regression, Logistic Regression,........ )

Machine Learning Models are for classification / prediction (Linear Regression,

Support Vector Machine...... ) B et
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Project 1. Hypertension

Physiol Genomics 42: 2341, 2010.
First published March 30, 2010; doi:10.1152/physiolgenomics.00027.2010.

CALL FOR PAPERS: | Computational Modeling of Physiological Systems

Identifying physiological origins of baroreflex dysfunction in salt-sensitive

hypertension in the Dahl SS rat

Scott M. Bugenhagen, Allen W. Cowley, Jr., and Daniel A. Beard
Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin

Submitted 3 February 2010: accepted in final form 25 March 2010

Bugenhagen SM, Cowley AW Jr, Beard DA. Identifying
physiological origins of baroreflex dysfunction in salt-sensitive hypertension
in the Dahl SS rat. Physiol Genomics 42: 2341, 2010. First published March
30, 2010: doi:10.1152/physiolgenomics.00027.2010.—Salt-sensitive hyper-
tension is known to be associated with dysfunction of the baroreflex control
system in the Dahl salt-sensitive (SS) rat. However, neither the physiological
mechanisms nor the genomic regions underlying the baroreflex dysfunction
seen in this rat model are definitively known. Here. we have adopted a
mathematical modeling approach to investigate the physiological and genetic
origins of baroreflex dysfunction in the Dahl SS rat. We have developed a
computational model of the overall baroreflex heart rate control system based
on known physiological mechanisms to analyze telemetry-based blood pres-
sure and heart rate data from two genetic strains of rat, the SS and consomic
SS.13BN, on low- and high-salt diets. With this approach, physiological
parameters are estimated, unmeasured physiological variables related to the
baroreflex control system are predicted, and differences in these quantities
between the two strains of rat on low- and high-salt diets are detected.
Specific findings include: a significant selective impairment in sympathetic
gain with high-salt diet in SS rats and a protection from this impairment in
SS.13BN rats, elevated sympathetic and parasympathetic offsets with
high-salt diet in both strains, and an elevated sympathetic tone with
high-salt diet in SS but not SS.13®N rats. In conclusion, we have

left unidentified because of these interactions. Thus, these
types of measurements become diminishingly informative with
an increased degree of genetic nonlinearity.

It seems, then, that more detailed phenotypic measurements
are required to understand the underlying etiology and to make
sense of the genetics associated with this complex disease. Of
course, this is not always possible; many measurements of
interest are either inaccessible or simply not practical to obtain.
In addition, many of these measurements are operating-point
dependent and are influenced to a high degree by physiologic
state. Methods of obtaining these measurements often require
invasive techniques that introduce stressors (surgical, pharma-
cological, etc.) that may themselves alter physiological state
and therefore the observed measurements. Thus, differences
detected in such experimental measurements may not always
indicate differences in underlying physiology but can rather
indicate differences in confounding variables related to exper-
imental conditions and/or methods.

Mechanistic mathematical models offer a powerful comple-
ment to laboratory measurements (5). By accounting for the

Paper 4




Project 1. Hypertension

Hypothesis: To test the hypothesis that high and low level of salt contents can identify
dysfunction in baroreflex mechanisms to indicate hypertension

Paper 4




Project 1. Hypertension

Give two different levels of salt, low level (blue), high level (red) to dysfunction rat
(SS; n=9) and compare with healthy rat (SSBN13; n= 6)

SS Rat 1
250
I l l
i}
c
)
£ 200
)
—_
=]
0
5
£ 150 — —
o
m k
100 | |
0 5 10 15 20 25 30
time(sec)
SSBN13 Rat 1
180 I
%)
c 160
)
IS
g 140 |- : :
® | ARt e ITEERNNY EREREETIERE it ! Hiv b ) '|ul"“" TN
B 120 1n~,::1:‘,.1p:pll;:g;‘.f‘,n:‘.ﬁ:‘,::::'.:I:H::l‘,:‘.lg;:;::;:;.'::g:l";:::1;l‘:1u:l;‘.n::::pp:g:‘l;p'l;'..’g?lq?..',.’~:‘IHEH;::nl:gf;:if;:\ﬁhﬁ:n:'.:hI'lﬂ:d::::‘.:‘n;:l'l:lu :uq;l"l;:;:;:l'l,\ﬁ:‘..ﬂ.‘;:. n;'.u::n;zg;;;{ ‘,j.’,l;;..‘,,..;ll:;?.ﬁ LEALhL A
I |”l”|‘“'\I\I‘n'\"l\I""‘I\'” ' |‘,\ RO iy \”'\I ”“\l‘\l\nl\I‘Il\l‘\l“"\:\l‘l\":\I‘ NIH i |l'\ ‘I‘l\l‘l| l\| o |l '”\I‘“'\I\”"|‘|‘I‘“ \”I\| "|‘|‘|”“H n||n|\||“|” |\|\”|\I\I\|\|\ ! ‘l|l|\:| I H”u l\h: Ill‘ Hll'l| ”I\”|
Q. 100 lL\ul"'\' ‘J‘\: \j ‘\:\\I | w ALK A !y l" "\:‘ Y u\u\' o ! ‘4 \""4 H Vi \l\:\j‘\ll uY '.: \j‘u \“:‘\:‘\:\\J\:\:\\:“:\\| \l‘ \'\: él \|\' | ‘;‘\:‘\,' | \,,'\\;vl‘é\,'v"" " 'y ‘\,I ! Wy \ iy u \\: ‘4”\: \:‘\:" \;\l iy ‘\: ny "\‘:\ i "\“'I\vl \:l\J"‘:\\l ‘:‘\: \:\\'\\:‘\:\\:\\,' :‘\:‘\:‘\,
o v ' ! AR T NI |
80 | | | | |
0 5 10 15 20 25 30

time(sec)




Project 1. Hypertension
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Project 1. Hypertension

Features: 135 ; Low Salt . 14 . Low Salt
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Project 1. Hypertension

Features: : . o . High Sai
Mean Blood Pressure (BP) /| : o
o %
Standard Deviation of BP 2}
150 . )
130 : % 9_ . %
SS SSBN13 SS SSBN13



Project 1. Hypertension

Low salt condition High salt condition
T H T T L T T

s there any predictability ? ) *
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Project 2. Dehydration Detection

1306 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 21, NO. 5, SEPTEMBER 2017 EMB Ct'fﬁ':ESoc i
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Salivary Markers for Quantitative Dehydration
Estimation During Physical Exercise

Matthias Ring, Student Member, IEEE, Clemens Lohmueller, Manfred Rauh, Joachim Mester,
and Bjoern M. Eskofier, Member, IEEE

Abstract—Salivary markers have been proposed as
noninvasive and easy-to-collect indicators of dehydrations
during physical exercise. It has been demonstrated that
threshold-based classifications can distinguish dehy-
drated from euhydrated subjects. However, considerable
challenges were reported simultaneously, for example,
high intersubject variabilities in these markers. Therefore,

wa nrnnnca a marhinaclaarninAa annraarcrh ta handla tha

osmolality have been shown to track total body water (TBW)
loss during physical exercise [2]. The determination of plasma
osmolality, however, involves invasive withdrawing of a blood
sample and separation of the plasma compartment [3, Ch. 19].

Therefore, salivary osmolality and other salivary markers
have been proposed as noninvasive and easy-to-collect alterna-

Paper 2




Project 2. Dehydration Detection

Hypothesis: To test the hypothesis that markers of saliva can detect dehydration

Paper 2




Project 2. Dehydration Detection

Features:

Amylase
Chloride
Cortisol
Cortisone
Osmolality
Potassium
Proteins

Paper 2



Project 3: Oxygen desaturation

Smokers vs Non Smokers

a frontiers ORIGINAL RESEARCH

. . published: 02 August 2017
in Physiology doi: 10.3389/fphys.2017 00555

®

Check for
Updates.

Pattern Analysis of Oxygen
Saturation Variability in Healthy
Individuals: Entropy of Pulse
Oximetry Signals Carries Information
about Mean Oxygen Saturation

Amar S. Bhogal and Ali R. Mani*

UCL Division of Medicine, University College London, London, United Kingdom

Pulse oximetry is routinely used for monitoring patients’ oxygen saturation levels with
little regard to the variability of this physiological variable. There are few published
studies on oxygen saturation variability (OSV), with none describing the variability and
its pattern in a healthy adult population. The aim of this study was to characterize
the pattern of OSV using several parameters; the regularity (sample entropy analysis),
the self-similarity [detrended fluctuation analysis (DFA)] and the complexity [multiscale
entropy (MSE) analysis]. Secondly, to determine if there were any changes that occur with
Edited by:  age. The study population consisted of 36 individuals. The “young” population consisted

Uniersty o ety U s Of 20 individiuals [Mean (1 SD) age = 21.0 (1.36 years)] and the “old” population
consisted of 16 individuals [Mean (+1 SD) age = 50.0 (+10.4 years)]. Through DFA Pa per 3

OPEN ACCESS

Reviewed by:

Damian Kelty-Stephen, analysis, O3V was shown to exhibit fractal-like patterns. The sample entropy revealed




Project 3: Oxygen desaturation

Smokers vs Non Smokers

Hypothesis: To test the hypothesis features of oxygen desaturation can detect the
smokers from non smokers

Paper 3




Project 3: Oxygen desaturation

Smokers vs Non Smokers

Features:

Mean

Variance

Sample Entropy
Multiscale entropy

Paper 3
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