

<u>MENG 4349 – Introduction to Renewable Energy Systems</u> <u>Course Syllabus</u>

Semester / Year	Fall 2022	
Catalog	The course will introduce renewable energy technologies with an	
Description	emphasis on solar and wind energy potential and application to power	
	generation. Topics include solar and wind energy principles, solar and	
	wind site assessment, solar panel and wind turbine components, power	
	generation machinery, control systems, connection to the electric grid, and	
	maintenance.	
Prerequisites	MENG 4349 Thermodynamics	
Section	030 & 040	
Number(s)		
Instructor	Dr. S Maloney	
Contact info	smaloney@uttyler.edu	
Class Type /	Face to Face at HEC Campus in Room A216 and zoom to Tyler Campus	
Location		
Zoom details	TBD	
Class Times	Mon/Wed 2:30PM to 3:50PM	
Office Hours	Mon/Wed/Thur 8:00-9:00AM	
Credits	3 credit hours	
Textbooks and	1. Kanoglu, et.al. Fundamentals and Applications of Renewable	
Reference	Energy 1st Edition, McGraw Hill Education, 2019	
Materials	(Chapters 1 through 5)	
Optional	N/A	
References		
Additional	N/A	
requirements		
Instruction /	This course will rely on a variety of methods to assess and evaluate	
Evaluation	student learning, including:	
Method/	Projects: There will be six projects, two for solar thermal, solar electric	
	photovoltaics and wind energy respectively.	
	Quizzes: There will also be three quizzes. Each section will have an	
	associated quiz that is due upon the completion of the lesson.	
Homework	None	
Grading Policy /	Grading in this course will be based on the following:	
Scale	- Assignments: $120 \text{ points } (6 \times 20)$	
	- Quizzes: 30 points (3 x 10)	
	- Final Exam 50 points	
	Scale: $A = > 90, B = > 80, C = > 70, D = > 60, F < 60.$	

	Grade appeal: grades can be appealed by meeting the instructor during office hours, but no later than a week after the grade has been given.		
Important events/dates	Labor Day and Thanksgiving Week – No Classes		
Attendance / Makeup policy	There will be no makeup for missed in-class work. An opportunity to make up a missed exam/assignment may be available to students with an excused absence. Be advised that makeup exams/assignments maybe more challenging. Excused absences include absences for University- sponsored events and for religious observances (see the University policy link above for the procedures to follow). Other makeups are granted only in extreme cases and at the discretion of the instructor. Excused absence due to illness will require evidence of treatment by medical personnel or		
	at a medical facility.		
Course Learning	By the end of this course students will be able to:		
Objectives /	1. Identify solar and wind energy system components		
ABET &	2. Calculate the available solar and wind power in a particular		
PEOs relation	location		
	3. Select and size solar and wind systems for energy applications		
	4. Perform economic analysis of solar and wind energy projects		

Lesson Plan

Orientation/Syllabus Review		
The Energy Landscape		
Overview of Renewable Energy Technologies		
Solar Thermal		
Solar Energy Fundamentals		
Types of Solar Collectors		
Solar Water Heating		
Solar Thermal Power		
Solar Thermal Cooling		
Solar Desalination/Distillation		
Solar Thermal System Basic Economics		
Solar Electric Photovoltaics (PV)		
PV System Components		
PV System Materials & Design		
Considerations in PV Selection & Sizing		
Solar PV System Basic Economics		
Wind Energy		
• Origin and Power in the Wind and Historical Perspectives on Wind		
Turbines		
Wind Energy Fundamentals		

- Wind Turbine Types and Power Performance Curve
- Wind Power Potential
- Wind Power Density
- Wind Turbine Efficiency & Betz Limit
- Considerations in Wind Power Applications & Selection
- Wind Energy System Basic Economics

Assignments and Quizzes	Points
Solar Thermal Quiz	10
Solar Thermal Projects	40
Solar PV Quiz	10
Solar PV Projects	40
Wind Energy Quiz	10
Wind Energy Projects	40
Final Exam	50
Total	200