

<u>MENG 4312 – System Dynamics and Control</u> <u>Course Syllabus</u>

Semester /	Fall 2023
Year	Fall 2023
Catalog	Dynamics of mechanical, electrical, thermal, fluid, and hybrid systems. System response
Description	using Laplace transform. Transfer functions. Transient response, Stability, Basic control
Description	algorithms, PID tuning methods, Frequency response, basic controller design and case
	studies.
Prerequisites	MENG 3309, MENG 3211, and MENG 3316, EENG 3301, EENG 3308
Section	001
Number	001
Instructor	Dr. Chung Hyun Goh
Name	
Contact	Email: cgoh@uttyler.edu
Information	Phone: 903-566-6125
	Office: RBN 3007
Class Type /	Face-to-face / Lecture / RBN 2007
Instruction	
Mode /	
Location	
Class Time	Tu/Th 8:00 AM – 9:20 AM
Office Hours	M/Tu/W 10:00 AM – 11:00 AM or by appointment
No. of Credits	3 credits (Lecture)
Required	System Dynamics – Katsuhiko Ogata 4th Ed., Prentice Hall, 2003, but older editions are
Textbook	acceptable:
	https://uttyler.bncollege.com/c/System-
	Dynamics/p/MBS_588545_new?currentCampus=782¤tTerm
	<u>=782_1_22_F&currentCourse=782_1_22_F_200_4312_3</u>
Optional	Recommended online textbook (available via library using patriots account) - Mandal,
References	Ajit K Introduction to Control Engineering: Modeling, Analysis and Design, New Age
	International Ltd, 2006. ProQuest Ebook Central,
	https://ebookcentral.proquest.com/lib/uttyler/detail.action?docID=395560
	- Lobontiu, Nicolae. System dynamics for engineering students: Concepts and
	applications. Academic Press, 2017. (Elsevier website:
	https://www.sciencedirect.com/book/9780128045596/system-dynamics-for-engineering-
	students)
Additional	Assignments and tutorials on MATLAB and Simulink by Mathworks, Inc. (available
Rules and	through virtual desktop – one.uttyler.edu)
Requirements	
Evaluation	Project / Report 20%,
Method	Mid-Term Exam 20%
	Final Exam 20%
	Homework 10% / Quizzes 10%
	MATLAB/Simulink (Flipped Classes) 10%

	Course Participation 10% (In-class example, MATLAB online assignments, etc.)
Grading	Letter grades, scale:
Policy / Scale	A: 90 – 100; B: 80 – 89; C: 70 – 79; D: 60 – 69; F: < 60
Important	Census date: 09/01/2023
Events /	Exam date: TBD
Dates	Last date to withdraw from one or more 15-week courses: 10/30/2023
	Final date: TBD
Attendance /	Regular attendance is imperative if you want to do well in this course. Therefore, regular
Makeup	attendance is highly recommended. In case you have to miss a class, it is your
policy / other	responsibility to keep up with the class work and be informed of all announcements
rules	made in the class on homeworks, tests etc. No makeup.
Course	By the end of this course, students will be able to:
Learning	1. Apply fundamental principles of dynamic systems to modeling.
Objectives /	2. Analyze dynamics systems in time domain and frequency domain.
ABET &	3. Conduct the analysis and design of SISO control systems.
PEOs	4. Use computational tools to assist in the design and analysis of dynamics systems and
Relation	pertinent controllers.
	5. Apply control system knowledge to real-world problems in case studies.
Tentative	1. Transfer-function modeling approach
Topics /	2. State-space modeling approach
Course Plans	3. Time domain analysis of dynamic systems
	4. Frequency domain analysis of dynamics systems
	5. Time domain control design
	6. Frequency domain control design
University	https://www.uttyler.edu/academic-affairs/files/syllabus_information_2021.pdf
Policies	