

<u>MENG 4317 – Vibrations</u> <u>Course Syllabus</u>

Semester /	Fall 2023
Year	
Catalog Description	Analysis and prediction of the free and forced dynamic behavior and of mechanical systems; first, second, and higher order systems; vibration isolation and absorption; vibration characteristics of rotating machinery.
Prerequisites	<i>ENGR2302 (Dynamics), MATH 3305 (Differential Equations) with a minimum "C" grade.</i>
Section Number	001, 040
Instructor Name	Dr. A. Ibrahim
Contact	Email: aibrahim@uttyler.edu
Information	Office: RBN 3008
Class Type /	F2F for Tyler Campus. Room: TBD
Instruction	Zoom for HEC. Room: TBD
Mode /	
Location	
Class Time	Mo/We 12:20PM - 1:40PM
Office Hours	<i>Mo</i> 9:00 <i>AM</i> – 12:00 <i>PM or by appointment.</i>
No. of Credits	3
Required	No textbook is required as lectures will reference material from a range of text and
Textbook	provide a full complement of lecture notes.
	- Engineering Vibration, 5th edition, Pearson - Daniel J. Inman, ISBN-13:
Optional	9780136809531
References	- Mechanical Vibrations, 6th edition, Pearson, Singiresu S. Rao, ISBN-13: 9780137515288
Additional	Programming skills.
Rules and	
Requirements	
	Assignments 25%
Evaluation	First Exam 25%
Method	Second Exam 25%
	Third Exam 25%
Grading	Letter grades, scale:
Policy / Scale	A: 90 - 100; B: 80 - 89; C: 70 - 79; D: 60 - 69; F: < 60
	Census date: September 1 ⁵⁷ , 2023.
Important	Last date to withdraw from one or more 15-week courses: October 50, 2025
Important Events /	$(n\pi ps://www.unyler.eau/scheaule/jiles/2025-2024/acaaemic-calenaar-2025-2024-main-$
Dotos	20230320.puj) Assignments Expect assignment avery week
Dates	First Exam Monday Sentember 25 th
	Second Exam Monday October 23 rd

	Third Exam Wednesday November 29 th
Attendance /	Attendance is required.
Makeup	No makeup.
policy / other	3+ $Absences => F$
rules	
Course	By the end of this course students will be able to:
	1. Formulate analyzable models of vibrating mechanical systems.
Learning	2. Solve single-degree-of-freedom (SDOF) free and forced vibration problems using
Objectives /	analytical and computer methods.
ABEI &	3. Solve multiple-degree-of-freedom (MDOF) vibration problems using analytical and
PEOS	computer methods.
Relation	4. Vibration of continuous systems.
	1. Vibration and Free Response.
Tentative	2. Response to Harmonic Excitation.
Topics /	3. General Force Response
Course Plans	4. Vibration of MDOFS
	5. Vibration of Continuous Systems
University	https://www.uttyler.edu/academic-affairs/files/syllabus_information_2021.pdf
Policies	