

MENG 3401 – Thermodynamics Course Syllabus

Semester /	Fall 2023
Catalog	Thermodynamic properties of pure substances. Definitions of work heat and energy
Description	First and second laws of thermodynamics and its application to fixed mass systems and
Description	control volumes. Analysis of thermodynamic cycles and their components
Prerequisites	C or better grade in FNGR 2302 Dynamics PHYS 2325 Physics L and PHYS 2125
Trerequisites	Physics I Lab
Section	001
Number	
Instructor	Hamed Hosseinzadeh
Name	
Contact	Email: <u>Hamed@uwalumni.com</u>
Information	
Class Type /	Face-to-face/ BEP 0213
Instruction	
Mode /	
Location	
Class Time	Monday/Wednesday 08:00 AM to 09:50 AM
Office Hours	Tuesday/Thursday 09:00 AM to 12:00 PM; By appointment
No. of Credits	4
Required	Fundamentals of Engineering Thermodynamics, 8th ed., by
Textbook	Moran, Shapiro, et al., John Wiley and Sons, 2018 (ISBN 978-1-119-39138-8)
Optional	1. Cengel, Y.A., Boles, M.A. and Kanoğlu, M., 8th Edition, 2015, Thermodynamics: an
References	engineering approach, New York: McGraw-hill.
	2. Potter, M., Thermodynamics for Engineers (Schaum's Outlines) 3rdEdition, 2013.
	3. Luettmer-Strathmann, J., 2015. Thermodynamics: For Physicists, Chemists and
	Materials Scientists.
Additional	N/A
Rules and	
Requirements	
Evaluation	Homework 10%/Midterm 30%/Final Exam 45%/Project 15%
Method	
Grading	Letter grades, scale:
Policy / Scale	A: 90 – 100; B: 80 – 89; C: 70 – 79; D: 60 – 69; F: < 60
Important	Census date: 09/02/2023
Events /	Last day to withdraw from one or more classes: 10/30/2023
Dates	Exam date: TBD
	Final date: Per published schedule by the register - TBD
Attendance /	Regular attendance is imperative if you want to do well on this course. Therefore,
Makeup	regular attendance is required. In case you must miss a class, it is your responsibility to

policy / other	keep up with the class work and be informed of all announcements made in the class on
rules	homework, tests, etc. No makeup.
	Therefore, will be no make-up exams. The percentage of any exams missed by a student
	will be added to his/her final comprehensive exam only if prior approval is granted. The
	student is responsible for contacting the instructor at least a week before the scheduled
	exam date to get an excuse from the exam. Final course grades will be determined based
	on the class evaluation method. If you miss any exam without getting prior approval
	from the instructor at least a week before the exam date, it will be counted as zero in the
	calculation of your final course grade. If you intend to be absent for a university-
	sponsored event or activity, you (or the event sponsor) must notify the instructor at least
	A transferred at a warry masting is strongly analyzing of hut not mandatory. There will be no
	makeup for missed in-class work. An opportunity to make up a missed exam may be
	available to students with an excused absence. Be advised that makeup exams maybe
	more challenging Excused absences include absences for University- sponsored events
	and for religious observances (see the University policy link above for the procedures to
	follow). Other makeups are granted only in extreme cases and at the discretion of the
	instructor. Excused absence due to illness will require evidence of treatment by medical
	personnel or at a medical facility.
Course	By the end of this course, students will be able to:
Learning	1. Determine properties of substances (Applying appropriate physical models of state for
Objectives /	a substance).
ABET &	2. Calculate the work done by and heat taken in by a system undergoing a change of
PEOs Deletion	state (reversibly and irreversibly).
Kelation	3. Perform first and second law analysis of steady-state flow systems (heat exchangers,
	turbines, pumps, condensers, boilers, and throttle valves).
	4. Perform analysis of thermodynamic cycles (e.g. Carnot, Rankine and Brayton cycles).
	5. Perform psychrometric analysis for heating/cooling processes.
Tentative	• Equations of state and physical principles behind liquid/gas phase separation.
Topics /	• Relationship between pressure/volume, temperature/volume, and pressure/temperature
Course Plans	spaces.
	• Computation of mechanical work and relation to pressure/volume space.
	• Designation of global/macroscopic kinetic and potential energy and internal energy as
	a property of state. • First law and computation of heat transfer
	• Measurement of heat transfer and conversion to an "equivalent" work
	• First law analysis of steady state flow systems: turbines, pumps/compressors, throttles,
	boilers, nozzles, diffusers, single substance mixing chambers, and heat exchangers.
	• Irreversibility and definition of entropy.
	Quantification of entropy.
	• Forms of the second law: entropy statement and logical equivalence with Clausius and
	Kelvin
	• Planck statements.
	• Definition of cycle efficiency and comparison with theoretical limit (Carnot).

	• Second law analysis of steady state flow systems: turbines, pumps/compressors,
	throttles, boilers, nozzles, diffusers, single substance mixing chambers, and heat
	exchangers.
	• Isentropic efficiency of turbines and pumps/compressors.
	• Efficiency of Rankine and Brayton cycles.
	• Vapor phase cycle/Refrigeration cycle and Heat Pump Systems.
	• Psychrometry
University	https://www.uttyler.edu/academic-affairs/files/syllabus information 2021.pdf
Policies	