

<u>MENG 3210 – Experimental Measurements and Techniques</u> <u>Course Syllabus</u>

Semester /	Fall 2023					
Year						
Catalog	This an experiential learning course based on Laboratory experiments. It exposes the					
Description	students to concepts of accuracy, uncertainty, and usefulness of measurements, Sensors					
	for measuring physical phenomena such as: strain, force, displacement, acceleration,					
	pressure, and temperature will be introduced. Data acquisition and signal processing					
	techniques will also be applied to actual measurements. Student teams will design,					
	analyze and document an experimental procedure. All procedures will result in a					
-	professional quality laboratory report.					
Prerequisites	S Grade C or better in:					
	- ENGR 2302 Dynamics					
	- PHYS 2326 University Physics II					
G (*	- PHYS 2126 University Physics II Laboratory					
Section						
Ingtructor	Lad: 031L, 033L					
Instructor	Ola Al-Shalash					
Name	Officer Headen Engine Conten A212					
Information	Unice: Housion Engineering Center: A212 E-mail: oalshalash@uttyler.edu					
Class Type /	Loture: Eace to face / HEC B222					
Location	Letter: Pace-to-face / HEC B222					
Class Time	Last rate to face r file 5222 Lecture - 030: Monday 11:15 AM - 12:15 PM					
	Attend the required lab meeting based on myuttyler enrollment:					
	031L : Monday 2:00 PM - 4:45 PM					
	033L : Friday 8:00 AM - 10:45 AM					
Office Hours	Mondays: 12:20 PM – 1:50 PM					
	Fridays: 10:45 PM – 12:15 PM or by appointment					
Credit Hours	2 (1 hour lecture and 3 hours laboratory per week)					
Required	Introduction to Engineering Experimentation, Third Edition, Anthony J. Wheeler and					
Textbook	Ahmed R. Ganji.					
Optional	1. Measurement and Instrumentation - Theory and Application, Second					
References	Edition, by Alan S. Morris and Reza Langari.					
	2. Theory and Design for Mechanical Measurements, Fifth Edition, by Richard					
	S. Figliola and Donald E. Beasley.					
	3. Measurement and Instrumentation Principles, Third Edition, by Alan S					
	IVIOIIIS.					
	4. Lauview internal. <u>https://tearn.ni.com/tearn/article/labview-tutorials</u>					
	5. Additional Material on Canvas: websiles, Class Handouls, Futorials on MATLAR and Simuliak by Mathworks. Inc.					
	WATLAD and Simuliak by Mauworks, Inc.					

Additional	Laptop requirement (see policy below)					
Rules and	LabVIEW by National Instruments, and MATLAB, Simulink & Simscape by					
Requirements	MathWorks, Inc. (available through virtual desktop – one.uttyler.edu)					
Evaluation	Grading:					
Method	Exam 20 %					
	Quizzes 10 %					
	Assignments, Class Participation and Conduct 25 %					
	Laboratory Reports 25 %					
	Project 20 %					
Grading	Letter grades					
Policy / Scale	Scale:					
	A: 90 - 100; B: 80 - 89; C: 70 - 79; D: 60 - 69; F: < 60					
	Grade appeal					
	Grades can be appealed by sending an email then meeting the instructor during office					
	hours, but no later than three days after the grade has been posted. Moreover, students					
	may appeal any grade reduction to the instructor if valid excuse with documentation is					
	provided.					
Important	Census date: September 1					
events/ dates	Last day to withdraw: October 30					
	Midterm Exam: Week of October 23					
	Project due: Week of November 27					
Attendance/	• Attendance is expected per university policy. Regular attendance is highly					
Makeup	recommended. It is imperative if you want to do well in this course.					
policy/	• Lab attendance is required. Failure in attending a lab will result in a zero grade					
other rules	in the corresponding lab report.					
	• Attendance will be taken and regularly checked using Canvas. Students who					
	come to class after attendance is taken will be considered absent.					
	• In case you have to miss a class, it is your responsibility to keep up with the					
	class work and be informed of all announcements made in the class.					
	• Students will not be permitted to leave the classroom during lectures/labs except					
	for extreme emergencies.					
	• No email submission of assignments, HomeWorks, etc. All assignments MUST					
	be submitted to Canvas for grading.					
	• No makeups unless students provide a university accepted excused absence with					
	proper documentation at the discretion of the instructor.					
	• A student missing a laboratory activity by 10 minute or more (e.g. arrive at					
	2:10:01 pm instead of at 2:00:00 pm) will have zero in the laboratory assignment.					
	• Questions involving knowledge covered in class (lecture/laboratory) will be					
	answered if the student proves that they have tried to come up with the answer.					
	Solution to homework and quizzes will not be given. However, students can work					
	on the right solution by checking their work with the instructor.					
	• Student with SAR status should contact the UT Tyler Office of Student					
	Accessibility and Resources for exam arrangements.					

	 Any minor violation of the Student Behavior (see below) or the Lab Safety form (see Canvas) by a student as deemed by the instructor will result in a full letter grade reduction for each incident while any major violation(s), such as cheating and plagiarism, by a student as deemed by the instructor will result in automatic failing grade in the course. The use of cellular phones during the class and lab is prohibited. No food is allowed in the classroom or laboratories. The syllabus is subject to change during the semester as deemed necessary. Students will be notified for any major changes. 		
Course	By the end of this course, students will be able to:		
Learning	1. Select and use sensors and instrumentation to report engineering measurements		
Objectives /	and to perform calculations using the corresponding governing equations. (SO6)		
ABET &	2. Interpret and analyze data, obtained from Engineering Experimentation, using		
PEOs	statistical methods and uncertainty analysis. (SO6)		
relation	3. Design, perform, and report results of a mechanical engineering experiment.		
	(SO5)		
	4. Use software for data acquisition. (SO6)		
	5. Write clear and well documented laboratory reports. (SO5)		
Tentative	Basic Measurements and Uncertainty		
Topics	Statistical Analysis		
	Signal Conditioning		
	• Temperature		
	• Displacement		
	• Strain		
	Self-directed laboratory investigation		
University	https://www.uttyler.edu/academic-affairs/files/syllabus_information_2021.pdf		
Policies			

Tentative course schedule:

#	Week of	Lecture Activity	Lab Activity
1	Aug. 21	Course Introduction/ Syllabus/ Significant Digits	Lab A - MATLAB onramp tutorial certificate credit
2	Aug. 28	Significant Digits	Lab B - Lab Safety Presentation and Quiz
3	Sep. 4	Monday, Sep. 4: Labor Day holiday - No Classes	Monday, Sep. 4: Labor Day holiday - No Classes
4	Sep. 11	Measurement Systems I	Lab C - LabVIEW I
5	Sep. 18	Measurement Systems II	Lab D - LabVIEW II
6	Sep. 25	Statistical Analysis I	Lab E - LabVIEW III
7	Oct. 2	Statistical Analysis II	Lab F - Report Writing/Project expectations and instructions
8	Oct. 9	Statistical Analysis III	Lab 1- How to use a Digital Multimeter
9	Oct. 16	Uncertainty Analysis	Lab 2 - Uncertainty in Measurements
10	Oct. 23	Mid-Term Exam	Lab 3 - Signal Conditioning
11	Oct. 30	Signal Conditioning	Lab 4 - Temperature Measurements
12	Nov. 6	Measuring temperature	Lab 5 - Displacement Measurements
13	Nov. 13	Measuring Displacement	Work on Student Design Lab Project
14	Nov. 20	Thanksgiving holidays – No Classes	
15	Nov. 27	Supplemental topic	Project Report due
16	Dec. 4	Final Exam Week	